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Abstract: A reliable confidence measure for the localization of road vehicles is a crucial re-

quirement to enable highly automated driving with an inherent self-awareness of its robustness

and capabilities. Therefore, the present contribution introduces a novel approach to estimate

not only the spatial uncertainty of a feature-based localization algorithm but also an associ-

ated confidence measure. The methodology makes use of Random Finite Sets to model and

quantitatively describe the (expected) difference between a given map of landmarks and a set

of corresponding online measurements. Based on a probabilistic representation of the two sets,

the above-mentioned confidence measure is derived. Simulation results based on a Monte-Carlo

localization framework are provided.
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1 Introduction

Self-localization is one of the well-studied topics in robotics and autonomous systems.
A detailed summary of common methodologies can for example be found in [1]. These
include Markov localization and multi-hypothesis tracking with Kalman filters as well as
grid and Monte-Carlo localization approaches with histogram and particle filters respec-
tively. Despite the long-term research in this area, there is hardly any contribution found
that addresses the problem of online measuring the confidence and reliability of such a
localization process.

A basic concept to measure the confidence of Monte-Carlo localization (MCL) algo-
rithms was outlined in [1] where the fundamental idea is to compare the current mea-
surement likelihood to its average, which is for example learned from previously collected
data. However, this approach cannot be directly adopted to the multi-object domain
due to the incomparability of the multi-object likelihood between different measurement-
to-landmark constellations, especially regarding the cardinality of the landmark map.
Another way to evaluate the performance of a (single-object) state estimator is to calcu-
late the Normalized Innovation Squared (NIS). The NIS is typically used for the online
verification of a Kalman filter (and its extensions) and follows a χ2 distribution for a
consistent state estimator if the uncertainty is assumed to be Gaussian. In the multi-
object case, e.g. regarding feature-based self-localization algorithms using multi-object
likelihoods, this concept is again not applicable anymore. Therefore, the Multi-object
Generalized NIS (MGNIS) was derived in [2] which facilitates an online evaluation of the
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performance for multi-object tracking algorithms. However, the MGNIS has the major
drawback that it does not follow a χ2 distribution anymore and additionally is dominated
by clutter. Therefore, its interpretation is quite problematic [3].

A different approach to evaluate the performance of multi-object filtering algorithms
with ground truth data is based on the Wasserstein metric. Examples of a Wasserstein
metric are, e.g., the Optimal Mass Transform (OMAT) metric [4] and the Optimal Sub-
pattern Assignment (OSPA) metric [5]. Both metrics provide a measure for the distance
of two Random Finite Sets (RFSs) that do not necessarily have the same cardinality
and are therefore especially well-suited for the evaluation of tracking algorithms based
on RFSs. The fact that clutter measurements and misdetections in general increase the
OMAT distance in a disproportionate manner led to the introduction of a cut-off param-
eter in the OSPA metric. Another Wasserstein metric, namely the Cardinalized Optimal
Linear Assignment (COLA) metric, that especially facilitates the evaluation of Simulta-
neous Localization And Mapping (SLAM) algorithms was recently published in [6] and
is derived from the OSPA metric. In fact, the two latter metrics try to incorporate both,
the cardinality and the spatial difference of RFSs at a time where the OSPA metric de-
livers a spatial distance and the COLA metric delivers a cardinality distance. Because
the Wasserstein metrics provide a distance measure between two RFSs, they can also be
used to measure the difference between a map of landmarks and a set of online measure-
ments. But again, they suffer from the effect that the distance between two sets tends to
increase with their cardinality. Another metric that facilitates the comparison of RFSs
is the Hausdorff metric which is typically dominated by outliers and therefore is hardly
applicable when clutter measurements and misdetections are present.

The proposed method circumvents the previously outlined drawbacks and provides
a probabilistic measure of the confidence and the spatial uncertainty of feature-based
localization algorithms. The derived confidence measure is based on the multi-object
likelihood [7] though its corresponding spatial uncertainty estimate is closely related to
the OSPA metric. The remaining parts of this contribution are structured as follows: first,
in Section 2, there is a brief introduction into the basic concepts and fundamentals that
are required for the understanding of the following definition of the confidence measure
in Section 3. Evaluation results based on a simulation framework are provided in Section
4 and a final conclusion is given in Section 5.

2 Basics

2.1 Random Finite Sets

A Random Finite Set (RFS) is defined by

X = {x1, ... , xn}, (1)

where the elements xi ∈ X are distributed according to a probability density function
f(xi) and the number of elements n = |X| follows a cardinality distribution ρ(n). Re-
garding the tasks of mapping and localization, RFSs are a suitable way of representing
feature maps and sets of measurements as they do not imply an intrinsic order in contrast
to random vectors [8]. Furthermore, with the Finite Set Statistics (FISST) [7] a Bayesian
framework is available that facilitates the usage of RFSs for feature-based mapping and
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Figure 1: Illustration of an association function θ with n = 4 and m = 3, where z3 is
a clutter measurement and x1 as well as x4 are misdetections that were assigned to the
notional misdetection measurement z0. Each landmark xi has a corresponding association
likelihood γi,θ(i) based on its assigned measurement zθ(i).

localization. In general, a map excerpt that lies within the Field of View (FoV) of the
respective sensor X = M ∩FoV is used. The map typically comprises landmark positions
in global coordinates whereas the measurements represent the feature detections in a lo-
cal coordinate system. The two-dimensional vehicle pose p̂ = [x y ψ ]T can for example
be estimated by maximizing the (multi-object) likelihood function g(Z|p̂, X) because the
likelihood for a set of measurements accordingly depends on the map of the environment
and the pose of the vehicle. An additional process model can be incorporated by utilizing
a particle filtering method. In the literature, this approach is known under the term MCL
[9, 10]. The fact that the true association between map landmarks and measurements is
unknown is addressed by summing over all possible hypotheses within the multi-object
likelihood following [7]. Because of the exponentially increasing computational power,
the multi-object likelihood is typically approximated by summing only over the k best
assignments.

2.2 Association function

Given a set of measurements Z = {z1, ... , zm} and a map of landmarks X = {x1, ... , xn},
the association function θ : {1, ... , n} → {0, 1, ... ,m} assigns to each landmark xi with i ∈
{1, ... , n} either a (true) measurement zj with j ∈ {1, ... ,m} or the notional misdetection
element z0. An important property of the association function is that a measurement
cannot be assigned to more than one landmark, thus θ(i1) = θ(i2) > 0 ⇒ i1 = i2.
However, several undetected landmarks may be assigned to z0 which is actually not a true
measurement but a mathematical construct. Figure 1 illustrates an exemplary association
function with 4 landmarks and 3 measurements. An association function θ can also be
expressed through an equivalent assignment matrix A and vice versa (c.f. Section 3.1.2).

3 Confidence measure

Based on the concept of the multi-object likelihood derived in [7], in this section the mean
association likelihood γ̄θ(Z|X) for a set of measurements Z, a map of landmarks X and
a known association function θ is introduced as a measure for the confidence of feature-
based localization estimates. A related approach is outlined in [1] (p. 257ff.) by comparing
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the current (single-object) measurement likelihood g(z|x) to the average likelihood that
is for example learned from the recorded dataset. However, the multi-object likelihood
degenerates in the number of measurements as well as in the number of map landmarks
and consequently would favor smaller cardinalities over larger ones. Thus, the basic idea
of this contribution is to average the (single-object) association likelihood

γi,θ(i) =

{
pD(xi) · g(zθ(i)) if θ(i) > 0

1− pD(xi) if θ(i) = 0
(2)

of a landmark xi and an associated measurement zθ(i).

3.1 Mean association likelihood

By disregarding clutter measurements for the moment, the mean association likelihood of
a set of measurements Z = {z1, ... , zm} and a map of landmarks X = {x1, ... , xn} can be
written as

γ̄θ(Z|X) =

(
n∏
i=1

(1− pD(xi))
∏
i∈Dθ

pD(xi) · g(zθ(i)|xi)
(1− pD(xi))

) 1
n

, (3)

where g(·|·) ∈ [0, 1] denotes a normalized single-object likelihood function, θ is an asso-
ciation function according to Section 2.2 and pD(·) represents the detection probability.
The set of indices of all detected map landmarks is given by Dθ := {i : θ(i) > 0} (c.f.
Figure 1).

3.1.1 Single-object likelihood

One possibility of defining a (normalized) single-object likelihood is based on the Maha-
lanobis distance:

g(zj|xi) = exp(−d(xi, zj)
2

2σ2
j

). (4)

In this case, d(·, ·) is the (Euclidean) distance and the covariance matrix Σj = σ2
j IN that

corresponds to a measurement zj is assumed to be a diagonal matrix of size N = dim(zj)
where the diagonal elements are σ2

j . Furthermore, the objects xi are assumed to be point
landmarks with an infinitesimal extent. However, this is just an exemplary definition and
might be interchanged by another one that fits better to the particular (sensor) setup.

3.1.2 Association function estimate

In general, the true association function is unknown. Therefore, multi-object tracking
algorithms consider all possible hypotheses resulting in an exponential growth of the
required computational power. A common approximation is to maintain in each step only
the most likely hypotheses. In the present contribution, the mean association likelihood
between a map X and a set of measurements Z is assumed to be the one corresponding
to the association that maximizes the confidence measure following

γ̄∗(Z|X) = max
θ
γ̄θ(Z|X). (5)
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(a) The general cost matrix C ∈ Rn×(m+n)
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columns z
(i)
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the respective landmark.

A z1 z2 z3 z
(1)
0 z

(2)
0 z

(3)
0 z

(4)
0

∑
x1 0 0 0 1 0 0 0 1
x2 0 1 0 0 0 0 0 1
x3 1 0 0 0 0 0 0 1
x4 0 0 0 0 0 0 1 1

(b) An assignment matrix A that corre-
sponds to the exemplary association func-
tion from Figure 1.

Table 1: Illustration of the cost matrix C and the assignment matrix A.

This assumption is particularly reasonable for distinct associations between measurements
and map landmarks where the multi-object likelihood is dominated by the association with
the highest weight (likelihood). Furthermore, this ensures a confidence measure within the
interval [0, 1] if the single-object likelihood itself is already normalized. The maximization
of the mean association likelihood can be realized with the Munkres assignment algorithm
[12]. The cost matrix C ∈ Rn×(m+n) that solves the respective assignment problem is
illustrated in Table 1a. The individual costs for assigning a measurement zj to a map
landmark xi with i ∈ {1, ... , n} are given by

ηij =

{
− log(pD(xi)g(zj|xi)) if j ∈ {1, ... ,m}
− log(1− pD(xi)) if j = 0

, (6)

where j = 0 represents a misdetection, pD(·) is the detection probability and g(·|·) states
the single-object likelihood. The result of the Munkres assignment algorithm is an assign-
ment matrix A ∈ {0, 1}n×(m+n) as illustrated in Table 1b.

3.1.3 Cut-off distance

With the assumption that all measurements zj are well separable and originate from a
distinct map landmark xi, the contribution of such a particular map landmark to the
mean association likelihood is given by

γi = max

{
1− pD(xi), pD(xi) max

j
g(zj|xi)

}
. (7)

Consequently, the misdetection probability is kind of a cut-off parameter that takes effect
whenever the distance between a measurement zj and its corresponding map landmark
xi is greater than

ďij =

√
−2σ2

j log

(
1− pD(xi)

pD(xi)

)
(8)

with pD(xi) > 0.5. Equation (8) represents the state where detection and misdetection of
a map landmark are equally likely, again disregarding the influence of the clutter source
for the moment. If pD(xi) ≤ 0.5, then ďij is not a real valued (positive) number and a
misdetection is always preferred, no matter how close a measurement zj is located to xi.
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The cut-off is somehow comparable to the one introduced in the OSPA metric, except
that it depends on the detection probability pD(xi) of a landmark xi and the standard
deviation σj of a measurement zj. This also means that a false association will be made
if zj is originating from xi and has a higher distance than the cut-off ďij. An illustration
of equation (7) is shown in Figure 3b for the cut-off distances de,1 = σ, de,2 = 2σ and
de,3 = 3σ that correspond to the respective detection probabilities pD,1 ≈ 0.62, pD,2 ≈ 0.88
and pD,3 ≈ 0.99.

3.2 Localization error estimate

The localization error of order p between X and Y that corresponds to an association
function θ is defined by:

ε̄θ,p(X,Z) =

(
1

|Dθ|
∑
i∈Dθ

d(xi, zθ(j))
p

) 1
p

. (9)

This estimate takes only those landmarks into account that were actually assigned to a
measurement. This is reasonable because misdetections and clutter measurements should
have an impact on the confidence measure and not on the localization error estimate. The
choice of p directly influences the weighting of outliers. For p = 1 the localization error
estimate is equivalent to the average distance between map landmarks and their assigned
measurements. For p = 2 the error estimate corresponds to the root mean square distance
and weights outliers higher than the arithmetic mean does. The minimum localization
error estimate ε̄θ,p over all hypotheses θ is equal to the localization error e

(c)
p,loc [5] of the

OSPA metric by disregarding clutter measurements and misdetections.

3.3 Clutter-extended mean association likelihood

By modeling the clutter as being Poisson distributed in the cardinality, uniformly dis-
tributed in the FoV and originating from a single clutter source that is treated like a
permanent map element of X, the mean association likelihood can be extended to incor-
porate clutter measurements as follows:

γ̄θ,λ(Z|X) :=

(
pλ(m− |Dθ|)

n∏
i=1

(1− pD(xi))
∏
i∈Dθ

pD(xi) · g(zθ(i)|xi)
(1− pD(xi))

) 1
n+1

, (10)

where m − |Dθ| is the number of unassigned measurements and pλ(k) = λk

k!
e−λ is the

Poisson distributed probability of having k clutter measurements in case of an expectation
value λ > 0. This can be thought of as an extension of X by a notional clutter source
x0 to which all the clutter measurements are assigned. Therefore, the clutter source
is treated just like any other landmark xi ∈ X with the only difference that it can
produce several scattered measurements within the FoV. Analagous to Section 3.1.2, the
association function θ can again be estimated via maximization:

γ̄∗λ(Z|X) = max
θ
γ̄θ,λ(Z|X). (11)

If the number of expected clutter measurements λ is unknown, it can for example be
additionally estimated alongside with the association function θ.
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3.4 Implementation

A major drawback of solving equation (11) lies within the dependence regarding the
assignment of measurements to landmarks with respect to the clutter source. To be
precise, the association likelihood of the clutter source pλ(m−|Dθ|) depends on the overall
association function θ itself. In contrast, solving equation (5) is much simpler because in
this case the cost ηij for assigning a measurement zj to a map landmark xi is completely
independent from the assignment of the other measurements. Therefore, the cost matrix
C is generated according to equation (6) (c.f. Table 1) which corresponds to finding the
best association for γ̄θ(Z|X) instead of γ̄θ,λ(Z|X). The optimal assignment problem is
then solved (e.g. by using the Munkres algorithm) for the mean association likelihood
by neglecting clutter measurements. The result of this step is an assignment matrix A
which is an equivalent representation of the association function θ∗ = arg maxθ γ̄θ(Z|X).
In particular, this means that all measurements that were not assigned to a (regular) map
landmark following equation (5) will be assigned to the clutter source x0 afterwards. The
confidence measure is thus approximated by

γ̄∗λ(Z|X) ≈ γ̄θ∗,λ(Z|X) =
(
pλ(m− |DA|) · e−ηA,C

) 1
n+1 (12)

where |DA| =
∑n

i=1

∑m
j=1 aij is the number of detected landmarks (those with an asso-

ciated measurement) and ηA,C =
∑n

i=1

∑m+n
j=1 aijcij is the overall cost for the respective

assignment. Certainly, the approximated confidence measure might be underestimated
but this, indeed, is less noticeable for a large number of map landmarks due to the re-
duced influence of the clutter association likelihood in this case.

4 Evaluation

The evaluation was done with a simulation framework that implements a feature-based
Monte-Carlo localization method. The localization algorithm is similar to the one running
in the autonomous driving vehicle at Ulm University [13].

4.1 Simulation framework

The simulation scenario consists of NL = 41 landmarks that are randomly scattered
alongside a pre-defined trajectory in each run whereas the trajectory itself is invariant.
The two-dimensional pose of the vehicle is defined by p = [x y ψ]T and is estimated using
a particle filter with a total of N = 100 particles. The modeled sensor has a FoV of 360◦

and is able to detect landmarks within a range of R = (1m, 20m). Landmarks are detected
by the sensor with a constant probability of pD = 0.88 and have an unbiased Gaussian
spatial uncertainty with a standard deviation of σ = 0.1m. The innovation step is carried
out based on the multi-object likelihood g(Z|X) having a set of measurements Z for a
given set of map landmarks X [7]. The number of clutter measurements per frame follows
a Poisson distribution with expectation value λ = 1. The confidence measure γ̄∗λ(Z|X)
is approximated using equation (12) and the corresponding localization error estimate
follows equation (9). Both measures were calculated only for the pose estimate p̂ which
equals the weighted mean of the particle set. An extract of an exemplary Monte-Carlo
run is shown in Figure 2a.
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Figure 2: An exemplary Monte-Carlo run using the simulation framework.

4.2 Consistency check

The Normalized Estimation Error Squared (NEES) for a given timestep k is defined by
ε(k) = xT(k)P−1(k)x(k). It is illustrated in Figure 2b for the related excerpt shown in
Figure 2a. The corresponding one-sided confidence interval for two degrees of freedom
and a confidence region of 95% is represented by the red line. A consistent state estimator
is assumed to violate this threshold in 5% of the cases. Consistency thereby is defined
such that for an unbiased estimator the true and estimated uncertainty coincide.

Another consistency check using N independent samples can be carried out by con-
sidering the mean NEES which is given by ε̄ = 1

N

∑N
k=1 ε(k). For a consistent estimator,

N · ε̄ should follow a χ2 distribution with N · dim(x) degrees of freedom [14]. This im-
plies that the mean NEES becomes arbitrarily close to dim(x) for N → ∞. The mean
confidence measure for the exemplary run shown in Figure 2 is approximately 0.51 where
the mean NEES of this run is approximately 0.54. A mean NEES below dim(x) indicates
that the uncertainty is overestimated. One reason for this is that an orientation error is
not covered by equation (9) and therefore accounts for an accordingly higher uncertainty
regarding the position error of the vehicle.

In Figure 3a, the mean NEES of 100 Monte-Carlo runs is plotted against different
confidence threshold values by taking only samples into account that satisfy γ̄(k) > γ̄th.
There is a quite sharp rise for γ̄th . 0.39 which can be explained as follows: If there
are no landmarks within the FoV, the confidence measure only depends on the clutter
association likelihood that follows a Poisson distribution. With the assumption that λ = 1,
the highest possible confidence measure is γ̄∗1 = e−1 ≈ 0.37 which dominates even if there
are a few coincidental matches between the two sets X and Z.
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Figure 3: Evaluation results of the consistency measure based on the mean NEES (left)
and illustration of the single-object association likelihood γi (right).

5 Conclusion

In this contribution, a novel approach to estimate the localization error alongside with
a corresponding confidence measure was proposed. The concept was derived for feature-
based localization algorithms using a probabilistic model based on Random Finite Sets.
The implementation makes use of the Munkres assignment algorithm and has the com-
plexity O(n3). The proposed methodology was evaluated using a simulation framework
that implements a feature-based Monte-Carlo localization approach. It showed promising
results in terms of a reliable and meaningful measure for the confidence of a multi-object
state and uncertainty estimate. An additional evaluation with real-world data is one of
the next steps that should be carried out in order to provide further revealing conclusions.
Moreover, an appropriate filtering method to smoothen the confidence measure would be
beneficial.
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