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Zusammenfassung: We propose an efficient approach to enhance the measurement likelihood

of differentiable star-convex extended target models to mitigate unlikely association processes

due to self-occlusion. Our approach allows us to retain an efficient computation of likelihoods

and hence the correction step for extended targets while simultaneously penalizing unlikely

measurement to target associations. In combination with a filter that is able to process multi-

modal distributions we find that this leads to a significant increase in tracking performance,

in particular during the initialization of the filter. We demonstrate an implementation based

on the recently proposed Gaussian process extended target model and show how our redefined

likelihood improves real-world tracking performance using automotive LIDAR data.

Schlüsselwörter: extended target, Gaussian process, transparency

1 Introduction

Robust automotive environment perception is based to a large extent on the tracking
of dynamic targets. For this purpose, the recorded data from one or several sensors is
processed to continuously estimate the pose and behavior of an unknown number of
objects in the vehicle surrounding. Due to the high resolution of modern sensors like laser
scanners a single target potentially generates more than one measurement per scan. To
track such an extended target the simple point object model commonly used in literature
has to be replaced by a more advanced model of the target object [1].

The widely used approach of adding a preprocessing step to reduce the complex measu-
rements patterns to trackable features of the extended targets [2] results in using heuristics
and a loss of information. The spatial distribution model avoids this problem by removing
the preprocessing step and working on the full set of measurements [3]. [4] introduced the
random matrices model that assumes the object extent is the primary source of measu-
rement uncertainty. For Gaussian distributed measurements they provide a closed form
expression for the target state distribution in the form of an inverse Wishart distribution
coupled with a Gaussian distributed kinematic state. The restriction of negligible measu-
rement uncertainty was later generalized by [5], with further improvements of this model
done by [6] and [7]. [8] suggests rectangular and elliptical shapes by means of superpositi-
on of Gaussian likelihoods, whereas [9] describes a particle filter for tracking rectangular
shapes. An approach to track general star-convex shapes was proposed by [10, 11] in the
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form of the random hypersurface model. [12] provide a filter to track arbitrary forms by
employing local grid maps.

The technique to illustrate the boundary of extended objects described in the present
paper was initially applied in the context of a tracking application in [13]. Due to its
analytical properties, the Gaussian processes (GP) have often been utilized in the fields of
machine learning, signal processing and statistics. They can be regarded as distribution of
functions and in turn allow the representation of an object contour as star-convex shape
described by a radial function. Coupled with a multivariate Gaussian to represent the
distribution of the kinematic state [13] could track arbitrary star-convex targets while
simultaneously estimate their shape.

The original definition of GPs is not applicable for recursive application like object
tracking since the different measurements are recorded sequentially in each measurement
cycle. For this reason, [14] used the recursive formalism of the GPs introduced in [13]. That
this measurement model can be used within a modern multi-object tracking framework
to track multiple objects with different kind of shapes was shown in [15].

A major weakness of the GP measurement model implemented in [13] and [15] is
the fact that the correction step is not unique but various combinations of the objects
center of rotation and its boundary contour exist in parallel. Consequently, there is a
chance of associating measurements to the wrong, i.e. the occluded side of the shape,
which implicitly leads to the assumption of a transparent target. In the present paper we
suggest a solution for the described transparency problem and demonstrate the results
with real-word data recorded with a state of the art automotive laser scanner.

The paper is structured as follows. First we are providing the main idea of Gaussian
processes and how they can be fitted into tracking applications in section 2.2. Than we
present how the single object is modeled and how the corresponding Gaussian process
measurement model is executed in section 3. section 4 is pointing out the transparency
mitigation and its use together with the Gaussian Process measurement model. Numerical
results on experimental data is shown in section 5. Finally the paper is concluded in
section 6.

2 Target Motion and Measurement Model

The following section imparts the basic knowledge about Gaussian processes and explains
how they can be used to model extended objects in the context of tracking applications.
In this paper scalars are stated with lower case letters (e.g. x), vectors with bold printed
lower case letters (e.g. x) and both sets and matrices with upper case letters (e.g. X).

2.1 Recursive Gaussian Process

A GP [16] is a stochastic process which can be regarded as multivariate Gaussian distri-
bution over functions. It can be described with

f(u) ∼ GP(x(u), k(u,u′)) (1)



and uniquely defined by its mean function and its covariance function

x(u) = E[f(u)] (2)

k(u,u′) = E[(f(u)− x(u))(f(u′)− x(u′))]. (3)

According to its interpretation as multivariate Gaussian distribution, the function
values f(u) of a GP are evaluated at the positions of the set of inputs u and follow the
Gaussian distribution curve. f(u1)

...
f(un)

 ∼ N (x, K), with x =

 x(u1)
...

x(un)

 K =

k(u1, u1) . . . k(u1, un)
...

. . .
...

k(un, u1) . . . k(un, un)

 . (4a)

Classical GPs are designed as batch processes, i.e. all the input data is available from
the start [16]. [13] applied the recursive formulation of GPs derived in [14] to come up
with the sensor data sequentially arriving in each update step. By the definition of the
GP recursion as state space model it is possible to use a Kalman filter to recursively
correct the GP estimation based on newly available measurements. Within this process
the measurement model for the shape f(u) of an extended target is defined as

yt = f(ut) + w, w ∼ N (0, R), (5)

w being the normal distributed zero-mean measurement noise with its covariance R. The
goal of the recursion is to estimate the approximation f t of the function f(u) at a finite
set of specific basis values uf . The so-called basic vectors f t located at basic points
uf =̂ {ufi | i = 1, . . . , n} are recursively estimated at the timesteps t = 0, 1, . . . . Set of
measurements zt =̂ {zt,i | i = 1, . . . ,m} at corresponding inputs ut =̂ {ut,i | i = 1, . . . ,m}
are observed for that. The positions and the number n of basic vectors are the same for
all timesteps t. For better readability we will omit the time index t in most of the case
and use it only if is needed for a better understanding. The basis vectors are a spares
representation of the GP. Assuming that the measurements z and the function values f
are jointly Gaussian, [16] showed that the conditional posterior density is given by

p(f | z1:t) = N (f ;xf , P f ) (6)

using the mean function values xf = [xf1(uf1), . . . , xfn(ufn)] at the basis points uf and the
process noise covariance P f . Further assuming a measurement process as defined in (5)
with w ∼ N (0, R), the conditional measurement likelihood function [16] is given by

p(z | f) =N (z; z+, R
f ). (7)

Here the predicted measurements are z+ = Hfxf , the observation model and the mea-
surement noise are

Hf =KmfK
−1
ff (8a)

Rf =Kmm +R−KmfK
−1
ff Kfm. (8b)

Here we use the short hand notation Kmf = K(u,uf ), Kmm = diag[K(u,u)], Kff =
K(uf ,uf ) and Kfm = K(uf ,u) for the kernels of the GP. The whole process can be
described in terms of Kalman prediction and correction equations as shown in [15].
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Abbildung 1: Gaussian process measurement model with its describing parameters. The
approximation of a vehicle with basic vectors xf and the corresponding basic angles θf is
visualize in (a). The green makes are examples of observations z of a sensor while the red
mark is a special marked observation showing the relation of local measurement angles
θL to the velocity vector v and the orientation ψ of the object model. (b) illustrates the
Gaussian process modeling the vehicle in (a) as function f(θ). The red line shows the
smoothed local mean function f(θf ) of the Gaussian process whereas the blue line is the
function based on the global basic angles θ(f,G).

2.2 Extended Object Model

Following the implementation described in [13], GPs can be applied to model moving
extended objects with a radial shape. The basis points are defined at specific angles θf

which span the interval [0, 2π), whereas the values of the mean function xf describe the
radial distance at the corresponding angles as illustrated in Fig. 1.

Augmenting the kinematic object model with the state space model of the GP, it is
possible to simultaneously estimate the motion and the extent of an object. The combined
state vector is then given by

x = [(xkin)T (xf )T]T, with xkin = [(xpos)
T ψ (xho)

T]T. (9a)

The motion states xkin consist of the position xpos = (xc, yc) and the target orientation
ψ as well as the higher order components xho of the center of rotation (COR) and the
orientation ψ. In this work we are using only the velocity v of the COR as higher order
component, therefore xho = v. We also assume a constant target object shape, i.e. xf =
xf0 . This assumption significantly decreases the computational effort of the correction
step since it avoids the online inversion of the GP correlation kernel. Note that discrete
changes between different shapes may be introduced by the use of a mixture model in
combination with state transitions. The state vector and its covariance P are recursively
predicted with an unscented transform (UT) similar to the one shown in [17] and corrected
with an extended Kalman filter (EKF) in analogy to [13].



2.3 Covariance Function

The choice of the GP kernel or covariance function has a strong impact on the behaviour
of the target shape. [13] used a periodic covariance function given by

kper(θ, θ
′) = σ2

fe
−

2 sin2
(
|θ−θ′|

2

)
l2 + σ2

rδθθ′ . (10)

The parameter l denotes the length-scale which can be interpreted as the distance in the
inputs required for a significant change in the outputs. The factor σf is the prior variance
of the signal amplitude and σr is the variance of the Gaussian prior. Using a periodic
kernel a GP can model 2π-periodic functions which allows different mean and covariance
values at basis angles.

The symmetric covariance function also presented in [13] corresponds to the periodic
covariance function with twice the frequency. It enables faster estimations of the object
shape in case of centrically symmetric targets. Contrary to the periodic covariance func-
tion, the symmetric covariance function implies that the COR lies at the object’s center.
Since in the context of moving vehicles the COR is more likely to be at the center of the
rear axis, [15] suggests an axis-symmetric covariance function.

Note that in the simplified case with constant target shape, i.e. xf = xf0 , additional
symmetries within the GP kernel are not required.

3 Gaussian Process Tracking

In this section we will roughly describe the prediction step of the tracking filter and in
more detail the combined measurement update of the kinematic state and the GP.

3.1 Target Prediction

The prediction of the GP state and covariance is carried out according to the equations
of the GP in [15]. The prediction of the kinematic state is performed according to [17] via
an UT implementation.

3.2 Measurement Correction

The a priori distribution of the state x is recursively updated with a set of measurements
Z =̂ {zk | k = 1, . . . ,m} at each timestep t.

In turn every measurement z has to be associated with a local angle θ relative to the
COR xpos and the orientation ψ of the object. These local angles are determined by

θL = θL(xpos, ψ) = θG(xpos)− ψ (11)

with θG(xpos) the global angles of the measurements relative to the x-axis. This measu-
rement process is depicted in Fig. 1. The local angles are used to describe the relation
between the object states and the measurements

Y = xpos + p(xpos)f(θL) + w (12)



with w the measurement noise as defined in (5). The radial function f(·) describes the
extent of the objects relative to xpos depending on the local angles θL. Last, the vector

pk(xpos) = p(θGk (xpos)) =

[
cos(θGk (xpos))
sin(θGk (xpos))

]
=

zk − xpos
||zk − xpos||

(13)

is the unit vector from the target center in the direction of the respective measurement.
By use of the above definitions (12) may be written as

Y = xpos + p(xpos)[H
f (θL)xf + εf ] + w, εf ∼ N (0, Rf (θL)) (14)

Y = h(x) + e, e ∼ N (0, Rgp) (15)

with the nonlinear measurement function

h(x) = xpos + p(xpos)H
f (θL)xf , (16)

and the combined measurement noise

Rgp = p(xpos)R
f (θL)p(xpos)

T +R. (17)

Since R was already accounted in (17) it can be neglected in (8b). The combined likelihood
of the kinematic state and the shape is in turn given by

p(Y | x+) = N (Y ;Z+, Rgp) where Z+ = h(x+). (18)

The m measurements Z as well as the combined measurement noise Rgp and the
nonlinear measurement function h(x) are reformulated for the purpose of the correction
step as

z = [zT1 , . . . ,z
T
m]T, Rgp = diag[R1, . . . , Rm], h(x) = [h1(x)T, . . . , hm(x)T]T. (19)

Using this augmented formulation, the a priori distribution of the state x can be recur-
sively updated by applying the EKF equations similar to [13] Following the well-known
EKF formulation the nonlinearity of the measurement function h(x) linearized and yields
the Jacobian H. The assumption of a constant a priori known shape allows the analytical
calculation (cp. [13]) of the gradient according to the following equations:

H =
dh(x)

dx
=

d

dx
[h1(x)T, . . . , hn(x)T]T (20)

d

dx
hk(x) =

[
dhk(x)

dxpos
,
dhk(x)

dψ
,
dhk(x)

dxho
,
dhk(x)

dxf

]T
=

[
Hpos, hψ, Hho, Hxf

]T
(21)

with

dhk(x)

dxpos
= I +

∂pk(w)

∂w

∣∣∣∣
w=xpos

Hf (θLk )xf + pk(xpos)
∂Hf (u)

∂u

∣∣∣∣
u=θLk

∂θGk (w)

∂w

∣∣∣∣
w=xpos

xf

dhk(x)

dψ
= −pk(xpos)

∂Hf (u)

∂u

∣∣∣∣
u=θLk

xf
dhk(x)

dxho
= 0

dhk(x)

dxf
= 0 (22)

Note that the dimensions of above matrices are

Hpos ∈ R2 x 2, hψ ∈ R2 x 1, Hho ∈ 0 ∈ R2 x (|xkin|−3), Hxf ∈ R2 x |xf |. (23)



4 Transparency Mitigation

This section describes a modified likelihood function that penalizes associations of measu-
rement to an unobservable part of the target model and represents the main contribution.
The lack of such a penalty in the original Gaussian process target model [13] may lead to
the association of measurements to the target surface opposite to the sensor-facing side
and hence yield to wrong association between measurement and obstacle surface which
leads in this regard to a false estimate of the COR. In the following we will use the term
transparent target for this effect. The root cause of this behavior is the efficient associa-
tion scheme within the Gaussian process target model in which the relative position of
the measurement with respect to the center of the star-convex shape determines where
on the surface the measurement point is assumed to originate, see eq. (16).

Since we do not want to compromise the efficiency of this approach we modify the
likelihood function itself rather than the association logic according to

g(Z|x) = gf (Z|x)gp(γ(Z,x)) (24)

where gf (Z|x) is the association likelihood of the measurements Z to the track x [18],
with the weighting function gp(γ(Z,x)) depending on

γ̃(z,x) =

〈
dz
dθG

, ẑ(xpos)

〉
‖ dz
dθG
‖‖ẑ(xpos)‖

(25)

the angle between the tangential vectors of the curve given by (12) and its orthogonal
projection on the tangential plane spanned by the field of view of the sensor. Note that
this approach may be considered as a failure recognition of the association scheme. The
modification will not create a better association between measurements and the target
surface like in [19] but only determine its failure and in turn penalize such an association.
In turn the approach should be combined with a sophisticated multi-hypothesis tracking
framework like a Bernoulli Filter.

In order to decrease the complexity of our calculation we approximate

γ(z,x) ≈

〈
dz
dθG

,n(xpos)

〉
‖ dz
dθG
‖‖n(xpos)‖

(26)

in which we replaced ẑ(xpos) with n(xpos) which is constant for a given target. This
approximation is valid as long as field of view occupied by the target is small. This
is usually the case for vehicles in front (or the rear) of the host vehicle and thus well
justified for applications such as target tracking for adaptive cruise control. Note that in
both cases the function γ only depends on the angle between the center of the target and
the measurement point. The function gp(γ(Z,x)) is then chosen according to the specific
sensor in use and the predominant use-cases. A simple but already sufficient realization
of the function γ(Z,x) for automotive LIDAR sensors and highway/rural road scenarios
used to generate our results is illustrated in Fig. 2.
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Abbildung 2: Schematic illustration of the visible part and the resulting γ(Z,x). The black
polygon is representing the ego vehicle from which the equally separated measurements
shown as colored dots in the upper right are generated on the target surface. The intensity
of γ(Z,x) for each measurement is visualized with the colorbar on the right. The blue
marks demonstrating observations which will get a penalty weight.
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Abbildung 3: Second scenario to compare a Gaussian mixture target track with three
components with and without applying the transparency weighting function gp(γ(Z,x)).
The figure on the top visualizes the trajectory output of the bernoulli filter. On the bottom
(b) is showing the logarithmic existence probability of the target track for every timestep
with executing the weighting function and (c) without it.

5 Results

The effect of the transparency mitigation function gp(γ(Z,x)) we will evaluate in the fol-
lowing by evaluating two scenarios with real-world data. In the first scenario the observed
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Abbildung 4: Comparison of a scenario with and without using the transparency weighting
function gp(γ(Z,x)). In the top left the trajectory of a Gaussian mixture target track
containing three components without applying the weighting function and in (b) with use
of the function. In both figures (a) and (b) the measurements are shown with colored
markers and the estimated target extent with colored polygons. The different painting
illustrates the diverse timesteps. Black correspond to the initial step. Figure (c) as well as
(d) are describing the normalized likelihoods of the three Gaussian mixture components
at each timestep of the scenarios shown in (a) and (b).

target vehicle is driving in front of the host vehicle with a similar high velocity whereas in
the second scenario the target vehicle is performing a right turn at approximately the same
velocity as the host vehicle. The scenarios were recorded with a Valeo Scala Generation 1
LIDAR mounted in the front bumper of the host vehicle. The measurement frequency is
25 Hz and features a range of detection of 100 m for a target with 8% reflectivity and an
azimuthal resolution of 0.25◦ in a field of view of ±72.5◦. All presented figures are visuali-
zed in the (right-handed) vehicle coordinate system with the origin located at the center
of the rear axis of the host vehicle and the x-axis situated along the vehicle symmetry
axis. For the target tracking framework we use a simple Bernoulli filter implementation
[20]. The kinematic state of all components is modeled with (9a) and the target extent
is modeled with a Gaussian Process with constant basic vectors xf = xf0 and cardinality
|xf0 | = 20. (see section 2.2.) The xf0 and corresponding angles are chosen to approximate
a rectangular vehicle shape with a width and length of 2.0 m and 4.8 m, respectively.
The covariance if provided by the correlation function (10) with parameters σf = 0.30
m, σr = 0.06/4 m and the lengthscale l = π/10. The noises parameters of the kinematic
process are set to σv = 1.55 m/s2 for the velocity and σφ = 0.22 rad / s2 for the yaw



rate. Last the measurement noise variance is chosen to be R = 0.10I m2. To highlight the
competition between different components in the Bernoulli filter we do not merge similar
components. Since we always consider only a single measurement cluster this modification
reduces the Bernoulli filter to a parallel implementation of different trackers with joint
estimation of existence probability. We are using a simple weighting function

gp(γ(Z,x)) =

|z|∏
i=1

f(γ(zi,x)) where f(γ(zi,x) = e−f̃(γ(zi,x)) (27)

with

f̃(γ(zi,x) =

{
τ, if γ(zi,x) > 0

0, else

to increase the effect of the transparency mitigation. In the following we will consider τ as
penalty term for measurements on the transparent side of the measured object. Note that
although the direction of travel of a target vehicle may be inferred from its shape with a
single LIDAR measurement, the velocity and in particular its sign cannot. In turn there
are two approaches to encode this ambiguity in the initialization: Either one initializes a
single component with a single expected velocity and a high σv or one initializes the target
track with several mixture components each using a different velocity. In the following
we will show that in both case the transparency mitigation will improve the tracking
performance.

5.1 Straight Driving Case

First we evaluate a scenario in which the target vehicle is driving in front of the host
vehicle and the initial track velocity is set to v = 0 m/s. To compensate for the uncertain-
ty of the initial velocity we choose a high variance σv = 0.225 m/s. The initial position
xpos = (51.25,−0.50) is chosen such that the Gaussian process contour aligns well with
the measurements. Last the process noise is set to σa = 1.55 m/s2. The results are shown
in Fig. 3: Trajectories in Fig. 3a are constructed by extracting the component with the
respective highest likelihood in every timestep. It can be clearly seen that the filter has
difficulties adjusting to the correct velocity despite the relatively high process noise and
needs several cycles to convergence to the correct velocity. Yet it is associating the measu-
rement to the respective opposite side of the target model. The side that faces the sensor is
not supported by measurements. If we now look at the (logarithmic) existence probability
of the Bernoulli filter using the original implementation (Fig. 3b) of the likelihood does
not indicate that the target is located in front of the measurements. In turn a filter will
continue to track the target and most likely not recover. On the other hand our modified
likelihood function (Fig. 3c) yields a steep drop in the existence probability and prevents
such pathological behaviour.

5.2 Right Turn Case

In a right turn scenario we initialize the track as a multi-modal distribution with three
likely but distinct velocities, namely v1,2 = ±10 m/s and v3 = 0 m/s. The initial position



and orientation is set to xpos = (92.0,−0.8) and yaw ψ = 0, i.e the same for all mixture
components, and again chosen such that the Gaussian process contour is aligned with the
measurements. Last, the process noise is set to σa = 0.89. Note that we are able to choose
a lower variance due to the multi-modal initial state.

Fig. 4 shows the comparative output of the filter with (right) and without (left) ta-
king into account the modified likelihood. The track trajectories in Fig. 4a and Fig. 4b
are constructed in the same fashion as before (see Fig. 3a). The figures clearly show that
without the modified likelihood the ambiguity between the components prevents a con-
sistent estimation of the track: Since no component is dominant the track jumps between
different components and creates the jagged trajectory. Moreover Fig. 4a shows the effect
of the measurements being associated to the rear of the target, which, given the physical
properties of the LIDAR, is highly unlikely. In contrast the modified likelihood prevents
unlikely terms to contribute. (see Fig. 4d.) (Note that those components reappear after
several steps. This is an artifact since we do not prune components which means we do
not delete components with a low existence probability.

6 CONCLUSION

This paper presented an efficient approach to improve the likelihood function for extended
targets to penalize unlikely association processes. We demonstrated the simple applica-
tion of our approach on a Gaussian processes target model and provided examples of
the effectiveness of our approach on real-world Lidar data recorded in typical driving
situations.
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