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Abstract: The detection and modeling of drivable free space is a major challenge for au-
tonomous driving. A novel approach is to use high resolution cameras especially in order to
get semantic information of the environment. However, most approaches fail to use a suitable
representation of the free space which is indispensable for subsequent processes like the behavior
and motion planning. This paper presents a generic framework for detecting and compactly
modeling free space based on fused camera data. For the detection, the disparity image and
pixel classification of a stereo-camera are used. Based on that, a new continuous semantic free
space model including temporal filtering is introduced. First evaluations show impressive results
even in challenging scenarios.
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1 Introduction

In the context of automated driving, the estimation of drivable areas is an essential and
intensively explored topic. A common strategy is to use a high-precision digital map
in which road areas are stored. By localizing the vehicle with a high-precision Global
Positioning System (GPS), a safe trajectory can be estimated based on the map and an
object tracking algorithm [4, 15]. Nevertheless, these concepts, which heavily depend on
digital maps, are not flexible enough to overcome complex scenarios or situations with
poor GPS reception, for example in dense urban areas. So for autonomous driving it is
inevitable to detect the dynamic drivable space while driving.

In order to do so, a novel approach is to use camera based sensors in combination
with Convolutional Neural Networks (CNNs) as a pixel classification of the scene can be
obtained [13]. Beside this, to overcome the missing 3D information in a mono-camera
setup, there are concepts utilizing depth information yielded by a stereo-camera [14].
However, an appropriate representation of the free space is required in order to plan the
vehicles motion for drivable areas. A common approach is to use grid maps where each
cell has a probability to be occupied [4]. An according extension are Digital Elevation
Maps (DEM) which additionally store height information of a cell [12]. Another strategy
is to use so called Stixels, which model objects by vertical structures with according height
extensions [8]. To further reduce the complexity for motion planning algorithms there are
more compact and efficient mathematical models that explicitly represent the free space
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boundary. Some novel approaches use polynomials, piecewise polynomials or B-splines
to represent the boundary. In their fundamental form, these models also allow to use
common temporal filtering methods as, for example, the Information or Kalman Filter
(KF) for B-splines [9, 5].

To improve the accuracy and robustness of the obtained information, a multi sensor
setup in combination with information fusion algorithms can be utilized. A generic ap-
proach based on a grid map is presented in [4], where radar and lidar information are
fused, however, only free space and occupied cells are distinguished. A sensor specific
fusion based on Stixels is used in [6]. By that, a pixel classification of a Neural Network
(NN) is fused with the result of an object detection algorithm applied on a disparity image
in order to detect unexpected objects.

In contrast, this paper presents a generic concept based on fused camera data in
order to model free space. Therefore, the information obtained by a disparity image
of a stereo-camera and a pixel classification is fused to estimate the drivable free space
in vehicle coordinates. Additionally, a suitable spline model is developed which is not
only able to smoothly represent the position of a free space boundary but also holds
semantic information. Furthermore, a method for temporally filtering the spline model
is introduced. The remainder of this paper is structured as follows. In Section 2 the
developed framework is presented. Section 3 shows results based on real world data.
Finally, a short summary and outlook is given in Section 4.

2 Free Space Modeling

2.1 Data Acquisition

As input data, the disparity image C of a stereo-camera is utilized to get depth information
of the scene. Further semantic information is obtained by a NN which yields a pixel
classification S of the image. Exemplary input data is depicted in Figure 1.

Generation of a Digital Elevation Map
The depth information is used to generate a DEM and to estimate labels for the single cells
by fitting adjacent planes and a street plane into the DEM. The according algorithms are
described in [12].In general, each cell receives unary and binary probabilities for belonging
to a street or adjacent surface. The unary probability is based on the height of the cell
and the binary probability is based on the relative height of neighboring cells. This
concept was extended by the label obstacles. The according unary obstacle probability is
formulated as,

P (z, zmin, zmax, λo, Pmin, Pmax) = (Pmax − Pmin)(s(z − zmin, λo)

−s(z − zmax, λo)) + Pmin , (1)

where

s(∆z, λo) =
1

(1 + exp(−∆z/λo))
. (2)

Thereby, Pmin and Pmax are the minimum and maximum probability for the label obstacle
and zmin and zmax denote the minimum and maximum height of an obstacle. Thus, the



obstacle probability increases for DEM cells with a height between zmin and zmax above
the street plane. The steepness of this gating function is controlled with λo. The binary
probability is equally distributed.

As a result, each DEM cell is described as Ω = [x,P x, h,p], where x = [xv, yv] is the
position of the cell center, P x represents the according covariances, h is the height and p
contains the label probabilities. In general the label set L = {street, obstacle, background}
is applied.

Processing of Scene Labeling
Basically, any pixel classification that provides at minimal the labels in L can be utilized
as input. The algorithm used in this work is described in [13]. In order to reduce noise
in S, a morphological opening on each of the probability sets is done followed by a
mapping of the labels to L. In the end, the pixel-wise probabilities can be associated to
the DEM cells using the stereo depth information. Thereby multiple pixels in the pixel
classification image possibly belong to a single DEM cell. Therefore, the mean of all
pixel-wise probabilities is used.

Data Fusion
Subsequently, the label probabilities can be fused for each DEM cell independently. There-
fore, the single label probabilities for a cell yielded by C and S are weighted with a
confidence weight wi. Consequently, the fusion can be calculated by

pFi (l) = (wCi (l) · pCi (l) + wSi (l) · pSi (l)) · wnorm , (3)

where pCi (l) and pSi (l) represent the probabilities for the label l ∈ L yielded by the ac-
cording sensor and pFi (l) is the label probability of the fused DEM which is normalized
with wnorm. This generic fusion also allows the integration of other information sources
as only the weighted probabilities have to be added before normalizing.

(a) Output Scene Labeling (b) Disparity Picture

Figure 1: Input Data Acquired by Existing Data Preprocessing Modules. On the left,
the image of a grey-scale camera overlayed by the pixel classification result, where blue
denotes the label background, green the label street and red the label obstacle. Thereby,
the grey areas are not labeled for performance reasons. On the right, the disparity image
is shown, where white pixels encode close data points and black pixels data points far
away. Unknown pixels are also encoded with black.



2.2 Free Space Model

In order to be able to model the free space boundary, associated boundary points B =
b1...m = [xv, yv,p

t]T have to be extracted of the DEM, where xv and yv describe the
position and pt = [pts, p

t
bg, p

t
ob]

T describes the probability for the transition labels, i.e. the
label of the objects beyond the free space boundary. The boundary point estimation is
done column wise in the DEM which itself is aligned to the u-columns of the disparity
image. Thereby, the last free cell in each column represents a boundary point bj, where
pt is calculated by means of the label probabilities of surrounding cells of bj. This is done
by using a mean filter on the fused DEM M according to

ptj(l
t = c) = mean(Mp(l=c) /∈ street,Hbj) , (4)

with the boundary point bj in the center of the mask H and c ∈ L. Where the size of the
mask defines the range of considered neighboring cells. While filtering, the cells labeled
as street are ignored since only information about the occupied space is required. A
schematic illustration of u-columns and boundary points can be seen in Figure 2. For the
mathematical model of the boundary, B-splines are utilized. Therefore, the control points
C = [c1, ..., cn] are estimated based on B. In addition, a knot sequence τ = [τ1, ..., τn+d]
is utilized which is equidistant in the xy-plane and where d represents the order of the
spline. In addition to the position, the probabilities for transition labels are approximated
by the spline. This is done by adding additional dimensions to the spline for the labels
in L. The resulting boundary state model is given as

b̂(τ) = [x̂v(τ), ŷv(τ), p̂ts(τ), p̂tbg(τ), p̂tob(τ)]T = Ĉ ·N d(τ)T , (5)

where N d(τ) contains the values of the basis functions of the B-spline.
In general, the control points C can be estimated by using a Least Squares Estimator

(LSE). With the concept of P-Splines [2] the curvature of the spline can be penalized
which enables the generation of smooth boundaries. The according LSE is given as

Ĉ(B) = [(Nd
T ·Nd + λ ·Dk

T ·Dk)−1 ·Nd
T ·BT]T , (6)

where k defines the order of the penalty and λ the intensity.
Thereby, a crucial problem is the association of the boundary points to the corre-

sponding positions τi. In [11] and [10] the measurements are assumed to be equidistantly
distributed on the spline. In case of camera based sensors this is true for the image
plane or respectively the uv-plane. However, this assumption does not hold for complex
boundaries in the xy-plane as large distances might be covered by only a few boundary
points and thus leads to overshooting behavior of the spline. Therefore, in this work, the
positions of the boundary points on the spline are estimated by their Euclidean distance
to each other. Thus,

τj =
||b1,..,j||
||b1,..,m||

· τn+d , (7)

where ||b1,..,j|| denotes the accumulative Euclidean distances from b1 to bj and τn+d is
the total length of the spline. In areas where the density of measurements is low, pseudo
measurements have to be generated in order to prevent ambiguous estimations. Consid-
ering the sensor model, the boundary between two boundary points has to be between
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(b) Boundary Points in Downscaled DEM

Figure 2: Exemplary Boundary Points. On the right, exemplary position of boundary
points in a downscaled DEM, where blue denotes the label background, green the label
street, red the label obstacle and yellow the label unassigned. The crosses represent the
position of boundary points. On the left, schematic spline models, where the measured,
predicted and filtered spline as well as the according boundary points of u-columns are
depicted. In addition, 3 corresponding boundary points bj are labeled.

the according DEM columns. Therefore, pseudo boundary points can be estimated by
linear interpolation. If the distance between two boundary points exceeds the required
minimum distance, an additional boundary point bj = 1

2
(bj−1 + bj+1) is generated. As a

result, a smooth boundary spline can be estimated. Examples for both spline models are
depicted in Figure 3.

2.3 Temporal Filtering

In order to estimate the boundary up to the margins of the DEM and to improve the
robustness of the free space model, a temporal filtering based on a Extended Kalman
Filter (EKF) [1] is implemented. Thereby, C is treated as the state and B contains
the measurements. Therefore, the association of a predicted boundary point b̂j(k + 1|k)
with a measurement bj(k + 1) is done by calculating the intersections of the predicted
spline with the DEM columns. As a result, each bj(k+ 1) can be easily associated with a

b̂j(k+ 1|k). Finally, the single filtered boundary points b̂1,...,m(k+ 1|k+ 1) are calculated
independently and consequently the filtered control points ĉ1,...,n(k + 1|k + 1) can be
estimated. The different boundary points are depicted in Figure 2 and the according
prediction of measurements and the subsequent innovation is described in the following.

Prediction
The prediction of the control points is done with the assumption of constant turn rate
and velocity (CTRV) which results in a standard prediction step of a EKF. However, the
transformation of the position covariances into the measurement space is approximated.
This is done by treating the elements of the covariance matrices as additional dimensions
of ĉi and as a result an approximation of the covariances for the position of corresponding
boundary points is obtained.
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Figure 3: Exemplary scenes for a qualitative comparison between the proposed spline
model in the xy-plane (orange) and the state of the art model with equidistant knots
(purple) or respectively in the uv-plane. In the top row, the splines transformed into the
image plane. In the bottom row, the splines in top view.

Innovation
Before calculating the filter gain, further adoptions are made. The model used for the
prediction assumes a static boundary which, obviously, does not hold for dynamic objects.
Therefore, the covariances of the boundary points are adapted according to their label.
Finally, a Kalman update for the positions can be performed.

The filtering of the labels has to be done separately. For this reason, fixed weightings
wc
L,j and wb

L,j for the previous and measured label are used with
∑
wL,j = 1. Conse-

quently, the filtered label probabilities are given as

p̂tj(k + 1|k + 1) = wb
L,j · ptj(k + 1) + wc

L,j · p̂tj(k|k) . (8)

Based on that, the filtered boundary points b̂1,...,m(k + 1|k + 1) can be obtained by com-
bining the corresponding position and labels. Exemplary results are shown in Figure 4.
Thus, a temporal filtering for the spline is available which avoids association problems
and handles semantic information.

3 Evaluation

For the evaluation, real world data is used which was acquired with an experimental
vehicle of Ulm University [4] and labeled manually in order to get ground truth data.
Thereby, four recorded sequences are used comprising rural roads and urban streets as
well as different light conditions and complex scenarios in construction zones.

In general, the labeling in the image plane is done using Matlab with the Annotation
Tool presented in [3] and the labeling toolbox shown in [7]. As all sequences together
contain more than 3000 frames, a subset of 80 frames are labeled with a high variety in
the scenes. Consequently, input data and according ground truth is available to evaluate
the detected free space.

Evaluating the accuracy of the spline position, boundary points of the labeled ground
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Figure 4: Boundary Spline Examples, where the label background is encoded in blue,
obstacle in red and street is shown in green. On the left, the resulting free space boundary
spline in vehicle coordinates, where the DEM cell centers with according labels are shown.
On the right, the resulting free space boundary in the image plane, where the transition
labels of the spline are shown.

truth are used and a Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

mgt

mgt∑
j=1

||bj − b̂(τj)|| (9)

is calculated. Where bj describes the ground truth boundary point that has the minimal

Euclidean distance to the spline boundary point b̂(τj) and mgt is the number of evaluated
boundary points.

The label quality is evaluated separately by the percentage of false labels, where the
labels ptj and p̂t(τj) are compared. By that, the false label ratio is defined as

false label ratio =

∑
l∈L FP

mgt

, (10)

where FP represents the false positives for the label l.
In order to analyze the accuracy of the spline model itself, the RMSE is measured

for the presented approach and the spline based free space model introduced in [9]. The
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Figure 5: Comparison between the RMSE yielded by the proposed spline model in the
xy-plane and the state of the art model with equidistant knots or respectively in the
uv-plane.

corresponding results are depicted in Figure 5 using all 80 annotated frames. Accordingly,
the median is reduced from 0.17m to 0.14m. Further, the standard deviation of the spline
resulting from the presented model is with 0.088m lower than 0.095m in the sate of the
art model. These findings are also qualitatively shown in Figure 3. Thereby, the xy-plane
spline is much smoother as there is no overshooting behavior. When using camera based
sensors this is often the case in transition areas between near and far objects.

Further, the temporal filtering of the spline is evaluated in Figure 6. Thereby, the
advantages of the filtering can be illustrated best for straight road parts as the utilized
ego motion module yields worse yaw angle estimations in curvy scenarios. This leads to
errors of the spline prediction but due to sensor input and not the concept itself. The
median of the label error evaluated on a range of 40 meters can be reduced from 0.61%
to 0.36% by the filtering, as well as the upper quartile and whisker.

As the filtering leads to stronger smoothing at object transitions, background boundary
parts are used to calculate the RMSE in order to keep comparability by using the same
parameter set. The median of the RMSE is reduced from 0.135m to 0.127m however
the upper quartile increases form 0.199m to 0.214m in the filtered result. This is due to
some outlier frames in which the yaw angle estimation is still inaccurate. By regarding
the spline boundary up to 25 meters and therefore reduce the influence of errors in the
estimated yaw angle, it can be seen that the median with 0.099m and 0.113m as well as the
upper quartile of the RMSE with 0.129m and 0.131m is lower in the filtered result. The
remaining outliers occur due to systematic errors of the input data in multiple subsequent
frames and therefore can not be compensated with filtering algorithms. By regarding the
qualitative results1, it can be observed that the boundary is smoothly estimated up to
the DEM margins. In addition, the filtered boundary appears much more stable.

Consequently, the developed spline model successfully represents the free space bound-
ary even better than state of the art concepts. Given a accurate yaw angle estimation, the
boundary can be additionally tracked and improved by the presented temporal filtering
approach.

1https://youtu.be/P18miHm0chE
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Figure 6: Evaluation of the Temporal Filtering, where background boundaries on straight
sequences are regarded. First row, evaluation of the RMSE with a range of 40 meters.
Second row, evaluation of the RMSE with a range of 25 meters. Third row, evaluation of
the label error ratio on a range of 40 meters.

4 Conclusion and Outlook

The main contribution of this paper is a new continuous semantic free space model with
an according temporal filtering. In addition, a generic concept for the integration and
fusion of semantic camera based data is proposed. As the evaluation shows, the proposed
concept is capable of representing even complex scenarios and the spline model even
outperforms state of the art concepts.

To further improve the results, future work includes the incorporation of lidar data,
as well as an improved estimation of the yaw angle by utilizing the sequence of stereo
images. In addition, it is reasonable to replace the currently used pixel classification with
a state of the art concept. Furthermore, a real time implementation is aspired in order to
use the free space representation for motion planning.
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[3] F. Korč and D. Schneider. Annotation Tool. Tech. rep. TR-IGG-P-2007-01. June
2007.

[4] F. Kunz et al. “Autonomous driving at Ulm University: A modular, robust, and
sensor-independent fusion approach”. In: 2015 IEEE Intelligent Vehicles Symposium
(IV). June 2015, pp. 666–673.

[5] F. Oniga and S. Nedevschi. “Curb detection for driving assistance systems: A cubic
spline-based approach”. In: 2011 IEEE Intelligent Vehicles Symposium (IV). June
2011, pp. 945–950.

[6] Sebastian Ramos et al. “Detecting Unexpected Obstacles for Self-Driving Cars:
Fusing Deep Learning and Geometric Modeling”. In: CoRR abs/1612.06573 (2016).

[7] Bryan C. Russell et al. “LabelMe: A Database and Web-Based Tool for Image An-
notation”. In: International Journal of Computer Vision 77.1 (May 2008), pp. 157–
173.

[8] L. Schneider et al. “Semantic Stixels: Depth is not enough”. In: 2016 IEEE Intelli-
gent Vehicles Symposium (IV). June 2016, pp. 110–117.

[9] M. Schreier, V. Willert, and J. Adamy. “From grid maps to Parametric Free Space
maps; A highly compact, generic environment representation for ADAS”. In: 2013
IEEE Intelligent Vehicles Symposium (IV). June 2013, pp. 938–944.

[10] Matthias Schreier. Bayesian environment representation, prediction, and criticality
assessment for driver assistance systems. Technische Universität Darmstadt, 2016.

[11] Jan Siegemund. “Street Surfaces and Boundaries from Depth Image Sequences Using
Probabilistic Models”. PhD thesis. Universitäts-und Landesbibliothek Bonn, 2013.
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