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Development
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Summary: In order to keep up with the growing complexity of safety-critical driver assistan-
ce systems, testing methods need to advance alike. Virtual testing represents a controlled and
deterministic environment, which is scalable with rising computing power. However, to obtain
a valuable simulation, the realism of the simulated vehicular perception is crucial. This paper
describes a method for modeling a sensor, which adapts to the behavior of sensor and refe-
rence measurements. The statistical framework enables generic use, as different environment
and sensor-output types can be treated within the same model. To prove this flexibility, va-
rious quantities of different sensors are modeled. Presented models envelop the field of view, the
estimated position, the estimation of other vehicles’ dimensions and a point cloud model.
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1 Introduction

As driver assistance systems become increasingly complex, the requirements for testing
and development are rising alike. Established testing routines are reaching their limits
and the development of other solutions is of interest [1, 2, 3].

Compared to road tests, virtual tests have various advantages: The controllable en-
vironment of the simulation enables direct testing of rare but critical scenarios without
any risk. Moreover, virtual testing can be deeply integrated in the development process as
instant feedback about critical function failure for developers. For major software releases
it might be helpful to detect problems using test-drives in a virtual environment before
starting long and expensive street tests.

The environment perception is the main input of ADAS. Therefore, the degree of
realism acquired in the simulation is mainly dependent on the quality of the sensor-
models. Current works on sensor-models can be divided into two categories: On one hand,
»physical* approaches exist [4, 5]. Objective of those models is to replicate electromagnetic
propagation. The major advantage is the possibility to consider complex geometries and
material properties. Disadvantageous are the high computational cost and the dependence
on low level interfaces of the simulator, which make portability to other simulators hard.
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On the other hand, statistical sensor-models exist. The major advantage is the low
computational cost. This enables extensive Monte-Carlo testing of various scenarios. Mo-
reover their interfaces can be standardized [6], as statistical sensor-models rely on high-
level information such as object-lists. Statistical models can be divided in two subclasses:
Parametric models [7, 8, 9] assume a certain probability distribution, which is described
by a fixed set of parameters. Those parameters are often interpretable, therefore model
properties can be set before sensor-measurements are available, e.g. in early development
stages. The second subclass are non-parametric methods. The density function is fitted
to recorded data, without restriction to a certain class of distributions. A comprehensive
comparison of the subclasses can be found in [10].

The non-parametric approach used in this contribution was first introduced in [11]
and further developed in [10]. In this paper, a novel generalization to various types of
sensor-outputs and environment descriptions is shown. This generalization empowers a
generic use, which is demonstrated by modeling various quantities of different sensors
with different types of reference measurements.

2 Modeling

In this section the problem is formalized, then the basic idea and the theoretical back-
ground of the model are described.

2.1 Problem description and basic approach

The task of a sensor is to measure a quantity in a certain environment. To formalize this, a
feature vector X describing the state of the environment, and a feature vector Z describing
the output of the sensor, are introduced. The transition from X to Z is assumed to be
non-deterministic. Therefore a probabilistic connection is enabled. This can be described
using the conditional probability density function (PDF) p(z|x).

When using a driving simulator, the simulated sensor output zgy,, is drawn from an
estimated conditional PDF P(Zgm [Xsim) in each time-step. Here the current state of the en-
vironment described by the simulator Xy, is used. Throughout this paper, the index “sim*
indicates a quantity in simulation, while “mea“ is a quantity acquired by measurements
on test-drives.

The basic idea of the approach is to return an output close to a recorded output,
which was measured in a similar situation. Therefore, the current state of the simulation
is compared to each state in which the measurements were received. The sensor-outputs
recorded in the most similar environments are then considered to return an output close
to one of them.

2.2 Non-parametric estimation

First, the conditional PDF is transformed to a joint PDF using Bayes’ theorem
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The state of the sensor-output zg, and the state of the environment xg, are feature
vectors describing for example object properties or weather conditions. As the state of the
environment is already known, the denominator is regarded as a normalization constant.

The joint PDF P(Zgim, Xsim) is estimated using a multivariate non-parametric approach
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The function K is the kernel function, which can be interpreted as a measure of simi-
larity [11]. The measurements were acquired in N time-steps. This approach requires the
assumption that all environment descriptions x and all sensor-outputs z are respectively
of the same type. Else K would have to treat multiple dimensionalities, or would compare
quantities, which are not properly comparable. Section 2.4 further describes this issue and
presents a solution for overcoming the limitations.

2.3 Kernel selection

This section briefly discusses the choice of kernel functions. Further description can be
found in [12] and [13].

As a special kernel function, a “diagonal® Gaussian kernel, separating the input and
the output, is particularly well interpretable

_AX;FE’I-AXI' _AZ;FE

e
2 exp -

=) ()

Az; 1 1
K(A)Z(L) = gKmf(Ax,) Keen(Az;) = — exp(

c

The relevance of each measurement is determined by Ky [11]. In other words, it
quantifies the similarity of each measurement to the current state of the simulation. As
common in literature, we used a Gaussian kernel with a diagonal covariance matrix for all
models. The variances, ¥, and ., should be chosen according to the “bias-variance
trade-off* [13]: Too narrow variances lead to only few recordings to be “close® to the cur-
rent situation Xgy,. Those few measurements usually do not expose all possible behaviors
given this situation. Choosing the variances too high, leads to oversmoothing: Behavior
of states, which are not representative for the current situation Xgm,, is biasing the true
PDF. In general, the variances should decrease as the number N of measurements rises.
Currently we set the values manually.

The shape of the contribution of each sensor-measurement to the resulting PDF is
defined by Kge,. Again, a Gaussian kernel with a diagonal covariance matrix is chosen. In
former works, we set the variances according to a leave one out cross-validation method
[12]. However, in the authors’ opinion, the effect of smoothing in K, can be neglected,
when a sufficient number of measurements was recorded. Therefore, its variances are set
towards zero, resulting in a Dirac delta function. This reduces the computational cost
at run-time, but the predominant effect is that it enables an important property: Under
the assumption of sufficiently well described environment states and sufficiently small
variances in K, only measurements are simulated, which truly appeared. Therefore,
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each behavior in the simulation is also possible in the vehicle. Nothing is made up, what
has not been recorded. Moreover, each behavior can be traced back to exactly one true
measurement. The latter is also possible when the variances are non-zero [10].

2.4 Generalization to various environment and sensor-output
types

The method described in the previous section is feasible as long as all vectors x and z are
respectively of the same type. However, for sensors of the environmental perception, neit-
her the environment, nor the sensor-output, should be limited to a certain type: Imagine
one of the measurements z;.y would not contain a sensor-output, e.g. due to occlusion.
This measurement would not be properly comparable to the other sensor-outputs. Ne-
cessary conditions for two vectors to be of the same class (i.e. kind, type), are for example
an equal dimensionality, and equal units in the respective dimensions. However, a coun-
terexample to the necessary conditions is the comparison of two positions: one describes
a tree, the other describes a car. Even though the necessary conditions are met, it is not
possible to compare them, as they describe fundamentally different situations. In other
words: it is like trying to compare apples and pears.

In the following, we drop the assumption that all sensor-outputs z are of equal type,
whilst maintaining this assumption on all x. We introduce the type of the simulated
sensor-output T, using the law of total probability

D
D(Zsim [Xsim) = Z D(Zsim [Xsim» ta,z) - Ptaz]Xsim)- (5)
d=1

T, is a random variable which is dependent, even determined by a sensor-output Z:

Tz<Z) =

t1a if Z is of output type 1
{ (6)

tp,z if Z is of output type D
The values represented by t1.p, have to be unique and constant, but are of no further
importance. D represents the number of different output types.
For example, when in reality one vehicle is present, the sensor will return an output

of one of the following types:

t1,: the sensor does not perceive the vehicle (object loss or out of the field of view)

to,: the sensor does perceive the vehicle

t3,,: the sensor does perceive the vehicle and one more object (track-split or clutter)

typa ... increasing the number of track-splits

Summing up, the introduction of the type T is used to determine the type tq, of all
measurements, which are used in the kernel estimation of the PDF P(Zgim|Xgim, ta,z) using
eq. (2). In other words, for each class t1.p,, a distinct estimator is trained, just using the
measurements of its belonging class. Regarding the kernel function, we currently use the
same K, for each estimator.
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The second term f’(tdls"" Xsim) indicates the probability of choosing an output of
type tz.,.. given the current state of the environment. It is also estimated using a non-
parametric approach

N
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The kernel function K, has to assure that its value is zero, when tq,  is not equal to
T, (Zmea,i)- We currently use a kernel function of the type described in eq. (4) and choose
Ko ref equal to Kier.

The assumption of a fixed type in x can be dropped using a similar manner. For each
class of x, a different non-parametric estimator is trained. However, for estimating the
type of the reference vector Tx(Xsim), no estimator is required since Xgm, and therefore
its type, is already known.

A general, vivid introduction to the method is shown in [11]. Regarding performance,
the efficient implementation described in [10] allows real-time capabilities with a huge
number of measurements.

3 Application

This part describes the modeling of various quantities. A comprehensive overview of exis-
ting sensor-errors is given in [14].

The described models can either run in a subsequent order. This would neglect corre-
lations that are not induced by the environment description x. The alternative of merging
the models will drop all independence assumptions. However, as the dimensionality of the
state vectors x and z increases, the curse of dimensionality will lower the model quality.
Therefore, more measurements need to be available for a proper estimation of the PDF.

3.1 Field of view and position estimation

Probably the most important quantities for the environmental perception are the detection
of objects and the estimation of their position. The ,field of view* denotes the positions
where objects are perceived. The field of view and the position estimation can be modeled
in one step, using the state description

T T
X = (Ore[,x,cornex'7 oref.y,corner) ’ z= (A()x, Aoy-, Oobject reference point) . (8)

Orefx,corner AN Opefy comer describe the longitudinal and the lateral position of the closest
corner of the target vehicle relative to the ego (i.e. host) vehicle. The reference vectors
Xmea,1:N are recorded using a high precision reference system in the host and the target
vehicle, consisting of a GPS with carrier-phase and an inertial measurement unit. Aoy and
Aoy denote the estimated position relative to the true position of the closest corner of
the vehicle Oref x corner; Oref,y,comer- By inserting the sensed position relative to true position,
the behavior of the transition from x to z stays similar, when varying x by reasonable
values. Therefore, more smoothing can be enabled by using high values in ¥,.. Currently,
the diagonal variances in X, are set to 0.5 [m] (Opetxcorner) and 0.5 [m] (Opefy,corner)-



120 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren

ki 250 1 250 I 250
: {08 e
.30 ] _ -
E EQGO :0.8 EQGD EQUO L
320 B l I 06 B
£ £ 150 06 150 £ 150 {4
° 28 e S °
@ @ @ @
£ £ : £ 04 £ 3
32? 31(}0 = 0.4 3100 3100
2 2 2 2 g
S26 QNN S 50 02 S 50 02 S 5
1
25
0 u 0 0 0 0
3 2 1 10 0 -10 10 0 -10 10 0 -10
lateral offset [m] lateral offset [m] lateral offset [m] lateral offset [m]
Figure 1: Exemplary (a) Detection (b) Track-split (c) Mean
radar model PDF rate rate absolute error
P (Zeia| P(t2:p 2 [Xsim)- P(t3:0,2 [Xsim-)- in meters.

Xup — <25.8[H1]) Jtog). Figure 2: Various quantities of a lidar- (to the left, positive lateral
1[m] " values), and a radar-system (to the right, negative lateral values).

The variances of the output side X, are all set to zero as explained in section 2.3.
Oobject reference point denotes the point on the target vehicle to which the position Aoy, Aoy
refers (e.g. bounding box middle, rear left corner, rear middle, undefined, ...). With the
chosen state variables, possible classes or the sensor-output z are indicated in the example
of section 2.4.

It is assumed, that the sensor behaves in a symmetric manner in lateral direction (i.e.
when changing the sign of the lateral position oOrety,corner). This was introduced by adding
“mirrored” measurements Xyea1:y and sensor-outputs Zpea1:n to the pool of measure-
ments.

To couple the reference and the sensor measurements, an offline track to track asso-
ciation is employed. It mainly compares the position and the velocities over the whole life
cycle of the objects. This enables associations, even when deviations become high (e.g.
when the object is far away).

The measurements were acquired on a test track, which resembles a motorway. The
weather was often foggy. Note that the sensors were recorded at once, hence both en-
countered the same situations and weather conditions. In order to exclude influences of
occlusions, there neither were objects, nor guard-rails between the host and the target
vehicle. Furthermore, the deployed systems are not the latest versions. Therefore the most
recent systems might exhibit even higher performance. In total, two and a quarter hours
of test-drive, which results in approximately N = 10° time-steps, were recorded (2 - 10°
when the symmetry assumption in lateral direction is included).

Fig. 1 shows the PDF of the sensed position of a radar system. The white rectangle
indicates the bounding box of the target vehicle, measured by the reference system. For
visualization purposes, the first two diagonal variances of 2., were set to 0.01 [m] opposed
to the usual zero [m].

Using calculated PDFs at each location, fig. 2 compares the detection rate (field of



11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren 121

—Reference [ —Reference — Reference | —Reference —Reference
— Simulation ¥ — simulation | —simulation *|—simulation —Simulation
x|~ Measurement Measurement |~ Measurement Measurement . 00| —Measurement

I

lateral offset [m] lateral offset [m] lateral offset [m lateral offset [m] lateral offset [m]

Figure 3: Comparison of reference, measurement, and simulation.

view), the rate of track-splits and the accuracy of the position estimation of a commercial
automotive radar and a lidar system. The laserscanner offers a robust detection of objects
in a range up to 80 m, almost no track-splits (i.e. multiple detections of the same vehicle)
and a high accuracy, even at poor weather conditions. The latter was quantified by the
mean of the absolute position difference between the sensed position and the position
measured by the reference system. Note that the position of the reference system was
transformed to the reference point indicated by the sensor (e.g. the rear right corner). For
the accuracy calculation only sensor-outputs containing one sensed vehicle were regarded
(i.e. type t2,). The radar shows a high detection rate up to 200 m, beyond which it
appears to be filtered by the signal processing. A drawback is the existence of track-splits
at the close border of the field of view. As our radar does not indicate a reference point,
we assume the middle of the rear of the vehicle for the accuracy calculation. This is the
best guess, when observing PDFs such as fig. 1. At good weather conditions, all quantities
of the lidar improved remarkably. This especially holds for the range of detection, which
was then robust up to approximately 200-230 m.

3.2 Length and width estimation

The aim of this model is to simulate the length and width of an object, estimated by a
sensor. An exemplary behavior can be seen in figure 3. The figure shows an overtaking
maneuver, where the host vehicle passes a truck. To simulate the behavior, the following
feature vectors are chosen

X = (0x, Oy, lyef, Wrer, b1, W) z=(l,w)". 9)

ox and oy represent the position of the target vehicle measured by the laserscanner.
These measurements are a sufficient reference, since the sensor behavior changes relatively
slow in oy and oy. Therefore, the error in the estimated position is negligible. Due to
their good angular resolution, laserscanners can determine the dimensions of a vehicle
well, when the vehicle is orientated sidelong to the sensor. However, when the object
has not been visible from the side, a length which is too low is assumed. The estimation
is particularly good when the vehicle is close, and viewed from the side. Therefore, the
reference length [,f and width w,e are estimated using the lidar system. The reference
is represented in figure 3 by the blue box, whose estimation was automatically derived
approximately from the fourth plot of the series. The object is visible and tracked in



122 11. Workshop Fahrerassistenzsysteme und automatisiertes Fahren

all directions as our sensor-setup consists of multiple fused laserscanners. To acquire the
best estimation, a holistic view of time is used. We assume the sensor returns its best
estimation of the dimensions when the vehicle was already seen from the side. We can use
this measurement as reference for all other measurements of the vehicle, as the dimensions
are a constant property of an object. The obtained reference is considerably more accurate
than the sensor-measurement, especially regarding those of the beginning. The estimation
of the dimensions in step T is dependent on the former estimations. By including the
previous sensor-estimations lr.; and wr.;, we assume that a Markov-chain of first order
is sufficient (e.g. if a Kalman filter is used).

The sensor-output z is characterized using the estimated length [ and width w esti-
mated by the sensor. To obtain the sets of measurements (Xmea,is Zmea,i)i=1:n Using the
described reference generation, 8000 km of test drives were used. 424 overtaking maneu-
vers were extracted for whom we expect to know a proper reference. The diagonal entries
of the variances ¥,o¢ used in the kernel are chosen to 7[m] (ox), 7[m] (oy), 1[m] (lwef),
0.2[m] (twrer), 0.1[m] (Ir-1) and 0.1[m] (wr.). In order to assure the model is not solely
overfitting, the track shown in figure 3 was excluded from the training of the model.

3.3 Point cloud of a laserscanner

In this section, the simulation of a point cloud generated by a laserscanner is demonstrated.
The sensor-output z in this model is a set of three dimensional points. Throughout this
model, only dynamic objects are regarded. The state of a target vehicle is characterized
by its position oy and orientation 7y

X = (Oref.x,corner-, Oref,y,corner ’Yref)T- (10)

Oref x,corner A Orefy comer are defined equal to section 3.1. 7y denotes the orientation of the
target vehicle relative to the host vehicle. x was recorded using the same high-precision
reference system as described in section 3.1.

The sensor-output z is a point cloud consisting of M points

2 = (A\0x point, 135 A0y point. 1315 A0y point 1) - (11)

Aopoint,; denotes the position of a point in the point cloud relative to the nearest
corner of the target vehicle. When recording the sensor-measurements e, 1.5, all points
caused by static objects are neglected. The distinction of static and dynamic objects has
already been performed by the sensor. Moreover, only points which were caused by the
target vehicle measured by the reference system are regarded. Therefore the points have
to be within a radius of three meters around the position of the target vehicle estimated
by the reference system. The diagonal entries of the variances X, used in the kernel
are chosen to 2[m] (0refx,corner)s 2[M] (Orefycomer), and 0.1[rad] (). Figure 4 compares
recorded measurements to ones generated by the sensor-model in one run. In order to
assure the model is not solely overfitting, the track shown in the figure was excluded from
the training of the model. Summing up, figure 4 demonstrates that the sensor-model is
able to generate an output similar to the recording.

To allow deeper insight into the model and the sensor, figure 5 shows the median num-
ber of points generated by the model, when the target vehicle is at different locations. The
adapted behavior exposes an approximately quadratically decreasing number of points in
distance, which was to be expected.
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Figure 4: Comparison of reference, measurement, and simulated points at various
simulation. positions of the target vehicle.

4 Conclusion and outlook

This paper described a statistical approach for modeling sensor behavior. The main idea
is to behave identically to the sensor, when measuring in a similar environment. Special
attention was centered around sensor-outputs or environments exhibiting various, non-
comparable types. The result is a statistical framework, which is capable of adapting to
diverse behaviors, based on sensor and reference measurements. This was demonstrated
by modeling different quantities of multiple kinds of sensors.

Future work should focus on the quantification of model quality. This is a necessity
since the realism of the sensor-model is crucial for the realism of the whole virtual testing.
Furthermore, this would allow the optimization of the model’s degrees of freedom such as
the choice of the state variables or the kernel functions.

Most fusion methods are based on forward or inverse sensor-models. The described ap-
proach is based on the estimation of the joint probability density function, which connects
the state of the environment with the state of the sensor-output. This intermediate result
can be used to replace the common, simple, and inaccurate sensor-models and therefore
improve the accuracy of sensor fusion.

Our future work includes sensor-models derived from long test-drives without refe-
rence, and physical sensor-models based on ray-tracing. Furthermore, we plan to compare
physical and statistical models.
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