
1111. Workshop Fahrerassistenzsysteme und automatisiertes Fahren

Fusing Radar and Scene Labeling Data for
Multi-Object Vehicle Tracking

Alexander Scheel, Franz Gritschneder, Stephan Reuter,
and Klaus Dietmayer∗

Abstract: Scene labeling approaches which perform pixel-wise classification of images have

become a very popular method for vehicle environment perception. They provide rich seman-

tic information about objects in the surroundings which is oftentimes not available from other

sensors. Yet, labeled images do not yield object-level information and object hypotheses incorpo-

rating object position and motion in a 3D world have to be retrieved through post-processing,

e.g. tracking. This paper presents a vehicle tracking approach which combines the semantic

information from scene labeling with precise range and Doppler data obtained from radar sen-

sors. Thus, the respective strengths of both information sources are combined and an improved

performance is achieved. By employing multi-object methods based on random finite sets, the

proposed method is able to track multiple vehicles and to consider interdependencies. It is

demonstrated using data from an experimental vehicle.
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1 Introduction

In scene labeling, each pixel in an image is classified with respect to the object type
that it belongs to. Especially the increase in computational power in combination with
the use of convolutional neural networks, e.g. [1], has led to tremendous progress in
this field. For automated driving, scene labeling is a promising technique as it provides
valuable semantic information about the environment. On the other hand, radar sensors
are another widely used information source for vehicle environment perception as they—
in contrast to monocular camera images—provide accurate distance and Doppler velocity
measurements and work comparatively reliable in adverse lighting or weather conditions.

By fusing the data from both sources, the respective strengths can be combined. While
scene labeling allows to distinguish vehicles from other objects and provides additional
information about the object contour, radar measurements help to precisely determine
the vehicle’s motion and to locate it in a 3D world. Yet, there are several challenges that
have to be overcome: Modern radar sensors provide many measurements from objects
or clutter sources that have to be correctly processed. As radar measurements may
originate from anywhere on the chassis and the Doppler velocities only indicate the radial
portion of the actual object speed, there is considerable ambiguity in the corresponding
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object state, especially when not only longitudinal but also cross traffic or turning vehicles
are considered. Additionally, ambiguous associations between measurements and tightly
spaced objects have to be resolved. In scene labeling, patches of classified pixels sometimes
extend over several partially occluded vehicles and hence need to be handled correctly as
well. Note that the two latter challenges arise if several objects are present and hence
require correct treatment of the multi-object problem. Finally, the data from all sensors
needs to be combined into a single and consistent representation of the environment.

This work proposes a multi-object tracking approach that makes use of finite set statis-
tics [2] and extended object tracking methods. By using a Random Finite Set (RFS) rep-
resentation of the multi-object state, the multi-object problem is tackled entirely proba-
bilistically and object dependencies which for example occur in occlusion constellations
can be considered. Data from a scene labeling module [3] and radar measurements are
fused in a centralized fusion scheme and the measurement models work on the raw radar
data and labeled images directly without further preprocessing routines.

In related work, Wojek et al. [4] presented a multi-object tracking approach for pedes-
trians and vehicles which works on monocular images only and combines information from
scene labeling with classical object detections. The approach is able to consider occlusion
and outputs bounding box representations of objects. Fusion of scene labeling information
with other data sources has for example been presented by Nuss et al. [5] and Schneider
et al. [6]. While [5] combines laser rangefinder data and labeled images for vehicle envi-
ronment modeling in an occupancy grid, [6] combines stereo images with semantic data
in semantic stixels. Both works hence achieve a higher abstraction level that allows for
further processing but do not focus on obtaining object-level information. To the best of
the authors’ knowledge, however, this paper presents the first attempt to fuse radar data
with semantic image information.

2 Tracking Approach

2.1 Multi-Object Formulation and State Estimation

The aim of multi-object tracking is to recursively estimate the kinematic state of all ob-
jects in the field of view (FOV) as well as the number of objects using a sequence of noisy
measurements. In multiple extended object tracking, the extent of the objects is addi-
tionally estimated based on the received measurement set which typically incorporates
several measurements per object. The multi-object Bayes filter [2] provides a mathemat-
ically rigorous framework for this problem based on RFSs which naturally capture the
uncertainty in the number of objects as well as in their individual states.

A labeled multi-object state is defined as the RFS Xk = {x(1)
k , . . . ,x

(n)
k } where the

number of present objects is denoted by n and k is the time index. Each labeled state
vector xk = [xT

k , �]
T consists of the object’s state vector xk and its unique label or identifier

�. Likewise, all measurements zk from time step k are grouped in the measurement set
Zk = {z(1)k , . . . , z

(m)
k } where m is the total number of measurements.

In the prediction step, the multi-object Bayes filter computes the prior multi-object
density

πk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)πk−1|k−1(Xk−1|Z1:k−1)δXk−1 (1)
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using the posterior multi-object density πk−1|k−1(Xk−1|Z1:k−1) at time k − 1 and a set
integral as defined in [2]. Here, Z1:k−1 denotes the set of all measurement sets up to the
previous time step k−1. The multi-object transition density fk|k−1(Xk|Xk−1) models the
individual objects’ motion as well as object appearance and disappearance.

The update step incorporates the new measurements at time step k by applying Bayes’
theorem. This leads to the posterior multi-object density

πk|k(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)δXk

, (2)

where gk(Zk|Xk) is the multi-object likelihood function which models the measurement
process. To improve readability and because all explanations focus on a single filter
iteration, the time index k is dropped in the remainder of the paper.

In general, the multi-object Bayes filter is computationally intractable. However, the
family of labeled multi-object distributions [7] allows for a closed form solution. Two
distributions from this family are used in this work and briefly outlined in the following.

The multi-object density of the Labeled Multi-Bernoulli (LMB) distribution is

π(X) = ∆(X)w(L(X))
∏
x∈X

p(x), where w(L) =
∏
i∈L

(
1− r(i)

)∏
l∈L

1L(�)r
(�)

1− r(�)
. (3)

Here, the distinct label indicator ∆(X), which equals 1 if and only if all labels in X are
unique and is zero otherwise, ensures that only meaningful multi-object states receive non-
zero density values and the label projection function L(X) = {� | [xT , �]T ∈ X} is used to
retrieve all labels from a multi-object state. Moreover, the inclusion function 1L(�) is 1
if and only if � ∈ L. Intuitively, the LMB distribution consists of independent object
hypotheses with corresponding probability of existence r(�) and state distribution p(x).
Due to the independence assumption, however, it is not able to represent influences of
objects on each other.

The Generalized Labeled Multi-Bernoulli (GLMB) distribution overcomes this limita-
tion by introducing an index c ∈ C and allowing for mixtures of different hypotheses with
weights w(c)(L) > 0,

π(X) = ∆(X)
∑
c∈C

w(c)(L(X))
∏
x∈X

p(c)(x). (4)

Note that all weights have to sum to one. Since the LMB distribution is a special case
of the GLMB distribution, it can be easily converted to this form. However, the opposite
direction, i.e. from GLMB to LMB, constitutes an approximation as information on the
existence of objects is lost [8].

2.2 Tracking Procedure and Data Fusion

The proposed tracking approach represents all vehicles in the environment using LMB and
GLMB distributions. Before prediction, the posterior distribution of the last time step
is given in LMB form. Then, the multi-object state is predicted to the next time step
using the standard prediction equations of the LMB filter [8]. Each object is predicted
independently using its state model. Moreover, the persistence probability pS(x) models
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the probability of an existing object to survive to the next step and thus governs the
disappearance of objects. New object hypotheses are initialized using radar measurements
from previous steps that indicated moving objects and have not considerably contributed
to updating already existing objects.

Due to the independent prediction of the vehicles, the prior multi-object distribution
allows for physically infeasible constellations with overlapping vehicles. It is therefore
transformed to the GLMB form, which allows for modeling dependencies between objects,
and it is ensured that only feasible object constellations are created. See [9] for a detailed
description with corresponding equations.

Since the GLMB distribution is a conjugate prior for the extended object measurement
models used in this work, the posterior distribution is again in GLMB form with updated
parameters. Afterwards, the posterior GLMB distribution is approximated by a simpler
LMB distribution. This avoids the combinatorial complexity of the GLMB filter at the
cost of loosing information on object dependencies.

For fusing the scene labeling data with the radar measurements, the filter uses a
centralized fusion scheme. That is, an entire filter recursion using the measurement model
of the respective sensor is conducted each time new measurements arrive. Measurements
are buffered and processed in correct order to avoid out-of-sequence problems.

Vehicles are assumed to follow a constant turn rate and velocity model. Hence, the
kinematic state vector is given by ξ = [xR, yR, ϕ, v, ω]

T . It is defined in the coordinate
system of the ego-vehicle and the entries xR and yR denote the position of the center of
the rear axle, ϕ represents the orientation, v is the speed of the vehicle, and ω denotes
the yaw rate. The extent of a vehicle is described by its width a and length b which
are combined in the extent vector ζ = [a, b]T . A constant value of 1.5 m is assumed for
the height. Also, note that the position of the rear axle is fixed at 77% of the vehicle
length since empirical studies showed that this value is suitable for most vehicles. The
composed vehicle state is given by x = [ξT , ζT ]T and the state density is modeled by a Rao-
Blackwellized particle distribution due to the non-linearity of the applied measurement
models. Similar to [10], Rao-Blackwellization is used to reduce computational demands by
only representing the kinematic portion of the state vector using particles. Each particle
holds a separate distribution over the extent, which is updated analytically. Here, the
extent is modeled by a discrete probability distribution with varying elements.

3 Measurement Models

For the two sensor types, different formulations of the multi-object likelihood function
g(Z|X) are used. While the radar measurement model uses a detection-type model, a
separable likelihood approach is used for the scene labeling data.

3.1 Radar Measurement Model

The employed radar measurement model was first presented in [11] and is based on the
general mutli-object formulation from [12]. It precisely models the relationship between an
object’s state and the received range, azimuth, and Doppler measurements. Additionally,
it evaluates several possible association and clustering hypotheses. Hence, it is able to
handle cross-traffic and turning vehicles as well as complicated association problems, e.g.
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in the presence of clutter measurements from rotating wheels. See [11] for more details
and the corresponding equations.

3.2 Scene Labeling Measurement Model

For updating the multi-object state using the scene labeling data, a separable likelihood
approach which has been proposed for multi-object tracking in image sequences in [13]
and [14] is used. It treats each pixel in an image as an independent measurement and
concatenates the pixel values in the measurement vector z = [z1, . . . , zm]. For the appli-
cation to labeled images in this work, each pixel zi is a binary variable which takes the
value 1 if the pixel is labeled with the vehicle class or 0 if it belongs to any other class.
Here, the traditional measurement set is now replaced by a vector, since the number of
measurements m is fixed. Furthermore, the measurement model makes four assumptions:

1. The indices of pixels that belong to an object with labeled state x can be computed
and are given by T (x).

2. T (x) ∩ T (x′) = ∅ holds for all x �= x′, since objects are assumed to stay separated
in the measurement space.

3. The measurement likelihood of a single pixel given x = [xT , �]T is

p(zi|x) =
{

ϕi(zi|x), i ∈ T (x)
ψi(zi), i /∈ T (x)

, (5)

where ϕi(zi|x) is the likelihood for a pixel that belongs to an object and ψi(zi) is
the background likelihood.

4. The measurements, i.e. pixel values, are (conditionally) independent.

This results in the multi-object likelihood

g(z|X) = f(z)
∏
x∈X

g(z|x) with g(z|x) =
∏

i∈T (x)

ϕi(zi|x)
ψi(zi)

, f(z) =
m∏
i=1

ψi(zi). (6)

The single object likelihood function g(z|x) is defined to be 1 if T (x) = ∅. For the closed-
form update equations in presence of a GLMB prior, please refer to [15]. In this work,
the likelihood functions ϕi(zi|x) and ψi(zi) are Bernoulli distributions with parameters
pϕ and pψ. These parameters specify the probability that a pixel is labeled as vehicle
if it actually belongs to a vehicle and the probability that it is labeled as vehicle if it is
actually part of the background.

To determine all pixels that belong to a vehicle T (x), an image mask is constructed
from a coarse 3D model of a vehicle. This is done individually for each particle in the
state distribution. Then, g(z|x) is evaluated for all pixels indicated by the mask.

The 3D vehicle model roughly describes the shape of a sedan. It is composed of 18
points and can be scaled to account for different vehicle lengths and widths. See Fig. 1a
for an example. For each particle, the object model is projected onto the labeled image
and the image mask is created by computing the convex hull around the points in pixel
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(a) 3D vehicle model scaled at 5 m
length, 1.8 m width, and 1.5 m height

(b) Exemplary vehicle mask for a ve-
hicle at 10 m distance

Figure 1: Mask generation for the scene labeling model

coordinates. All pixels inside the hull are attributed to the vehicle. An exemplary image
mask is depicted in Fig. 1b. Note that the convex hull is used because of its computational
efficiency despite the resulting mask inaccuracies in certain configurations. As the goal of
the model is only to give a rough approximation and vehicles vary considerably in their
shape, this simplification is tolerable. Also, note that vehicles are assumed to drive on an
even ground plane and the model does not consider unevenness of the road. If necessary,
adding a state variable for the z-position is straightforward.

Assumption 2 of the separable likelihood model requires objects be separated in the
measurement space. That is, objects in the multi-object state may not share pixels.
In practice, however, this is the case in occlusion situations and individually computed
vehicle masks could overlap. From a theoretical point of view, a violation of Assumption 2
results in a cardinality estimation error, i.e, in the estimated number of objects. Due to
the representation of the multi-object state in GLMB form during update, however, such
object dependencies can be considered. Therefore, the standard update is augmented by
an occlusion handling similar to [16], where occlusions in laser scans were considered in a
separable likelihood model.

In the prediction step, the prior GLMB distribution is constructed such that it is
composed of several realizations of the multi-object state with a definite declaration of
present objects. For each multi-object state hypothesis, the vehicle constellation is ana-
lyzed and the masks are adapted by subtracting all masks from vehicles that are closer
to the camera. Note however, that this step is simplified by only considering the masks
of the prior vehicle mean state to avoid computing all possible particle combinations.

4 Evaluation

The proposed tracking approach was implemented in MATLAB and is tested on data
from an experimental vehicle. It is equipped with two short range radar sensors mounted
in the corners of the front bumper with an opening angle of about 170◦ and a range of
43 meters as well as a wide angle mono camera behind the windshield (opening angle
approx. 115◦). Three scenarios are presented: A highly dynamic scenario with a single
vehicle and precise ground truth values to examine the tracking accuracy, a scenario with
two leading vehicles to demonstrate fusion benefits for resolving closely spaced targets, as
well as another scenario for testing the capability to handle occlusion.
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State Radar only Fusion

xR in m 0.284 0.199
yR in m 0.231 0.142
ϕ in ◦ 5.029 2.755

v in m/s 0.365 0.274
ω in ◦/s 6.507 5.037
a in m 0.325 0.327
b in m 0.589 0.539

Table 1: RMSE values for the
horizontal eight scenario
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Figure 2: Horizontal eight scenario: esti-
mated track and trajectroy (solid), ground
truth (dashed), and radar measurements
(beige - left sensor, blue - right sensor)

4.1 Tracking Accuracy

In the first scenario, the target vehicle drives a horizontal eight in front of the stationary
ego-vehicle. This scenario is challenging due to the changing aspect angles and highly
dynamic motion including fast turns with yaw rates up to 60◦/s. Table 1 lists root mean
squared error (RMSE) values for the scenario when tracking with radar only and when
additionally fusing the semantic information from the image. The values are averaged over
20 Monte Carlo (MC) runs to reduce random effects due to the particle implementation.
All estimation errors are decreased when fusing the scene labeling data, except for the
width, where the error almost remains identical. Especially the estimate of vehicle ori-
entation is considerably improved which is most likely due to the additional information
from the object contour. An excerpt of the scenario is depicted in Fig. 2.

4.2 Multi-Object Scenario

The second scenario comprises two vehicles passing the ego-vehicle on the left and right
and then driving side by side with little distance. When both vehicles are close to each
other, the radar sensors intermittently yield merged measurements since the sensors can-
not resolve the two objects with almost identical speed and distance. Due to this effect
and the proximity of the resolved measurements, radar-only tracking sometimes mistakes
the two vehicles as one. See Fig. 3 for an example. This effect can be tackled by explicitly
considering target resolution constraints in the radar measurement model or by reducing
approximations made in the update step, for instance, by incorporating more clustering
hypotheses or refraining from the LMB approximation of the posterior distribution.

Another method, however, is to assist the radar-only tracking with additional scene
labeling information. Figure 3a shows that both vehicles are clearly distinguishable in the
camera image. A centralized fusion of both data sources thus enhances the estimation
result and allows to continuously keep track of both vehicles. A projection of the fusion
result into the labeled image is shown in Fig. 4a and Fig. 4b compares the estimated
number of objects from radar-only tracking with the fusion result as well as the ground
truth. The estimates have been averaged over 10 MC runs. Note that the fusion result is
constantly close to the ground truth and does not show pronounced deviations.
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(a) Track (red box) project into la-
beled image (blue - background, green
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Figure 3: Radar-only results for two vehicles driving closely to each other
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(b) Cardinality estimate: truth (dashed red),
radar-only (gray), and fusion (black)

Figure 4: Estimation results for the multi-object scenario

4.3 Occlusion Scenario

To demonstrate occlusion, two vehicles are driving a semi-circular arch in the third sce-
nario. Once both vehicles are in front of the stationary ego-vehicle, the front vehicle
occludes the second one. Figure 5a illustrates the masks that are used for updating the
multi-object hypothesis which contains both vehicles in an exemplary time step. Note
that the illustrated masks are the average from all particle masks. Only the visible portion
of the occluded vehicle is used to update the distribution. Hence, the filter avoids cardi-
nality errors and overconfidence which occur if pixels are falsely used multiple times to
update different objects. Also, this example demonstrates that the filter does not require
preceding segmentation of labeled pixels into objects and is able to inherently cope with
labeled pixel patches that encompass multiple objects. The estimation result including
ground truth for the occluded vehicle is depicted in Fig. 5b.

At this point it is important to mention that occlusion handling as well as tracking
accuracy obviously depend on a certain similarity between the tracked vehicles and the
3D model. Since the model is rather coarse and the convex hull additionally distorts the
shape, the masks are suitable for most vehicles. This has been observed in supplemen-
tary experiments. Yet, the estimation errors understandably grow with increasing shape
dissimilarity, e.g. for large utility vehicles.
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(a) Average vehicle masks during oc-
clusion: front vehicle (darkly tinted)
and rear vehicle (lightly tinted)
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Figure 5: Estimation results for the occlusion scenario

5 Conclusion

This paper proposes a new method to fuse radar and scene labeling data for vehicle track-
ing. It uses an RFS-based multi-object tracking approach in combination with extended
object models that make full use of all available data. That is, no data preprocessing
such as segmentation is required and the filter works on the radar targets as well as la-
beled images directly. Also, the multi-object formulation allows for considering occlusion
situations and dealing with large patches of labeled pixels from several objects internally.
As demonstrated in experiments, considerable improvement of the tracking results with
respect to accuracy and the cardinality estimate is achievable by fusing the scene labeling
information, despite the rather simple image processing based on a 3D vehicle model and
image masks.
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