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Real-Time Radar SLAM
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Abstract: The Simultaneous Localization and Mapping (SLAM) problem is one of the key

problems on the way to autonomous driving. This paper provides a cost-efficient and robust

method with great accuracy in both localization and mapping. Therefore, a particle based

localization algorithm combined with 2D occupancy grid mapping is used. The algorithm uses

an odometer to obtain information about the vehicle movement and four radar sensors to get

a 360◦ coverage of the environment. The algorithm is evaluated on a dynamically changing

parking lot scenario and a driveway scenario. For each scenario, the algorithm is compared with

a highly accurate ground truth system. In certain situations, the algorithm achieves a RMS

error of less than 0.2 m. The results prove the performance of the algorithm.

Index Terms: Localization, Mapping, Occupancy Grid, Radar, SLAM

1 Introduction

This paper provides a Simultaneous Localization and Mapping (SLAM) algorithm [1]
which builds a 2D occupancy grid map [2]. The algorithm uses radar sensors to capture
the environment and a particle based approach for localization [3]. Radar sensors are
cheap and independent of weather conditions but lack in angular accuracy compared to
LiDAR sensors. Therefore, the automotive industry uses radar sensors rather for obstacle
avoidance applications like adaptive cruise control than localization algorithms. By using
a particle based approach for localization and a discrete 2D occupancy grid for mapping,
the algorithm ensures high accuracy in both localization and mapping while keeping the
computation time low to guarantee real-time processing.
To evaluate the performance of the algorithm, two scenarios are processed. The first
scenario tests the algorithm in a dynamic parking lot situation. The parking space consists
of approximately a 150 m by 35 m area. The driven trajectory is approximately 400 m
long. The dataset consists of sequences at different time and weather conditions to show,
that the algorithm is independent of changing environments. The second scenario tests
the algorithm in a driveway situation. This scenario demonstrates the strength of the
algorithm in static environments.
The rest of this paper is organized as follows: Section 2 gives a short review of existing
SLAM algorithms and points out differences to the proposed SLAM algorithm. Section 3
describes the proposed real-time radar SLAM algorithm in detail. In Section 4, the
algorithm is evaluated on two scenarios. Section 5 gives a brief conclusion about the
gained knowledge and an outlook for future work.
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2 Related Work

The SLAM problem has been a popular research topic in the past years since it is one
of the key problems on the way to autonomous driving. Durrant-Whyte et al. provide a
tutorial about the essential SLAM problem in [4] and recent advances in [5]. Beside of
the same theoretical basis, SLAM realizations differ in the used map representation and
localization algorithm.
Feature based algorithms extract relevant information from raw sensor data and save them
as landmarks in the map. Therefore, data storage is reduced but the extraction is often
connected with reduced robustness due to solving the data association problem. Since fea-
ture extraction is common in image processing, feature based methods are commonly used
with cameras [6]. An extension of feature based algorithms are graph based approaches.
GraphSLAMs, first introduced by Thrun et al. [7], model relative landmark positions and
vehicle movements as constraints to build a graph. The graph is optimized by minimizing
the least-square problem under given constraints. Since the optimization step is done
offline, online localization results depend on the previously optimized map, which lead to
high errors in dynamically changing environments. Grid based algorithms [8] work with
raw sensor data and integrate them in a discrete map representation. This leads to a
higher level of detail due to the disappearance of the feature extractor and the associated
avoidable information loss. Downsides are higher data storage and computation costs.
The first approaches to localize the vehicle pose simultaneously has been using an ex-
tended kalman filter (EKF). EKF-SLAMs take the correlation between landmark and
vehicle poses into account, but could diverge if any of the strong required assumptions
are violated. To respect the nonlinear process model and non-gaussian pose distribution,
a particle filter can be used. FAST-SLAMs [9] use Rao-Blackwellisation and the associ-
ated state space reduction to reduce the computation cost and make the particle based
approach practical applicable.
Existing SLAM algorithms often use sensors with high accuracy and low noise like LiDAR
sensors. Bruno et al. [10] introduce an extension of the established DP-SLAM [11]. The
algorithm uses a particle filter for localization on a single map. The main difference to our
algorithm is the map representation. Bruno et al. use a grid based map, where each cell
stores the distance from the vehicle to a measurement, that lies inside the cell. The al-
gorithm is very performant and simple to implement, but not designed for large outdoor
environments due to the low accuracy in these situations. Zhao et al. [12] use LiDAR
sensors for large outdoor environments. The focus of the algorithm is achieving a high
accuracy and differ between static and dynamic objects. Therefore, the algorithm uses a
classification based on the motion history and the shape of the object, and a matching
algorithm to correct the estimated pose. A separate loop closure algorithm ensures high
accuracy in cyclic situations. Radar sensors are recently recognized for localization [13]
due to their advantages, especially their availability in contemporary vehicles. Schuster
et al. [14] use a stream clustering algorithm to extract features from radar measurements
and incrementally update the map. The localization is done using FAST-SLAM with a
specially designed weight function with respect to the map representation. A radar based
GraphSLAM is introduced in [15]. Odometer measurements and landmarks are added to
the graph and stored in a R-tree data structure. A RANSAC is used to filter outliers and
assign an unique identifier to each landmark. The graph optimization is done offline after
the drive.
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3 Real-Time Radar SLAM

The algorithm provides two outputs, the 2D occupancy grid map of the environment
and the estimated trajectory of the vehicle, including all estimated positions so far. Sec-
tion 3.1 describes the idea of occupancy grid maps as a representation of the environment.
Section 3.2 introduces the proposed method to localize the vehicle.

3.1 Map representation

The environment is represented by a 2D occupancy grid [18]. The idea is to equally
divide the space in independent cells m(x,y), where each cell has a probability P (m(x,y)) of
being occupied. Examples of occupancy grid maps are shown in Figure 3 and Figure 5.
A dark color indicates a low occupancy probability while a light color indicates a high
occupancy probability. The medium gray indicates that the state of the cell is unknown,
then the occupancy probability is P (m(x,y)) = 0.5. To integrate new measurements into
the map, the posterior probability needs to be calculated for each cell. By using a binary
Bayes filter and the log-odd representation of the probabilities, the posterior probability
is calculated to

L(m(x,y)(t)) = L(m(x,y)(t− 1))− L(m(x,y)(0)) + log

(
P (m(x,y)(t)|Z1:t, X1:t)

1− P (m(x,y)(t)|Z1:t, X1:t)

)
(1)

L(m(x,y)(0)) is the prior probability and set to zero. The term P (m(x,y)(t)|Z1:t, X1:t) is
called inverse sensor model, a sensor specific probability to respect the influence of a
measurement on the grid cells. For radar sensors, the inverse sensor model is obtained as
follows: Cells, which are affected by the measurement relative to the normally distributed
uncertainty, are updated with respect to the plausibility. The plausibility is calculated
based on the range, amplitude and angle of the measurement. In contrast to the inverse
sensor model used for laser scanners, the update is done for each measurement in the same
angular range, not only for the furthermost measurement. All remaining Cells between
the uncertainty ellipse of the measurements and the sensor mounting position are assigned
decreasing occupancy.

3.2 Localization system

The localization system uses a particle based approach. A particle filter [3] approximates
the recursive Bayesian filter, where the posterior distribution p(x(t)|z1:t,u1:t) is repre-
sented by a finite set of particles X (t) = {x1(t), ...,xM(t)}. Each particle is a hypothesis
of the current vehicle pose at time t

xk(t) = (Nk, Ek, ϕk)
ᵀ (2)

where Nk is the northing position, Ek the easting position and ϕk the heading of the
vehicle. Additionally, a nonnegative weight wk is assigned to each particle. A high weight
indicates, that the particle is a sufficient hypothesis of the current state x(t).
Figure 1 shows the structure of the proposed SLAM algorithm. During the initialization
M particles are randomly generated around the first pose of the vehicle, which is set to the
origin of the coordinate system. The map is initialized empty. To handle asynchronous
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Figure 1: Structure of the proposed SLAM algorithm.

input datastreams of the sensors, radar sensor measurements and odometer information
are buffered. This is necessary to ensure the processing of the sensor inputs in the right
chronology. The chronology is especially important for cornering, because a wrong mea-
surement order can lead to high errors in both localization and mapping. During the buffer
processing step, odometer and radar data are treated separately. Each time the odometer
provides new information about the current motion of the car, the last estimated position
is updated and all particles are predicted. Therefore, the algorithm uses the single-track
motion model [16]. We add noise to the particles each in linear and angular movement
of the car with respect to odometer measurement errors. A state machine distinguishes
whether the vehicle is driving or not. If the vehicle is stopped, neither prediction nor
correction is done. Incoming radar sensor measurements will be collected together, each
transformed in the current car coordinate system, so that all radar sensors can be pro-
cessed at once. In the next step, the pose of the vehicle is corrected based on all currently
collected measurements. Therefore, the algorithm takes an excerpt of the current grid
map around the car and applies a distance transformation under the squared euclidean
distance to it [17]. The distance transformation calculates the minimum distance from
a cell m(x,y) to a cell with a high occupancy probability. For f(x′, y′) = P (m(x′,y′)), the
distance transformation calculates to

Df (x, y) = min
x′,y′

((x− x′)2 + (y − y′)2 + f(x′, y′)) (3)

= min
x′

((x− x′)2 +Df |x′ (y)). (4)

Equation 4 states that the 2D distance transformation can be splitted in two 1D trans-
formations along the columns and rows of the grid, which reduces the computation costs.
The size of the so-called likelihood field is set, so that all relevant radar measurements are
in range while keeping computation time low. The distance transformation is necessary
for the particle filter weight calculation, because it breaks the discontinuities resulting
from the discrete grid representation. Figure 2 shows an example of the grid map and the
generated likelihood field after the distance transformation was applied. To calculate the
particle weights, the current measurements are transformed into each particle coordinate
system. Then the weight of the particle is calculated based on the occupancy probability
at the position of each transformed measurement point (xz, yz)

ᵀ in the likelihood field.

wk(t) = (1− α) ·
∑
xz ,yz

Df (xz, yz) + α · wk(t− 1) (5)
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Figure 2: Visualization of the distance transformation. The left image shows the ori-
ginal grid map. The right image shows the resulting likelihood field after the distance
transformation was applied.

This ensures that particles have a high weight, if the current measurements have much
correspondences to the current map. Obviously, correspondences can only be achieved
with a 360◦ field vision of the radar sensors when the vehicle is moving forward in an
unknown environment. The parameter α is used for exponential filtering to prevent large
changes in particle weights. The evaluation has shown, that α = 0.7 is sufficient.
After the weight calculation, a high rate of particles is resampled using a low variance
resampling algorithm [19]. The rest of the particles, particles with the lowest weights, are
deleted and new particles are spread randomly around the current position to ensure a high
particle variance. The position can now be estimated from the particle set. Therefore, the
particles with the highest weights are clustered in space. In the last step, the processed
measurements are transformed in the coordinate system of the new estimated position.
After that, the measurements can be integrated into the map, as described in Section 3.1.

4 Experimental Results

A V6-powered Mercedes-Benz E 350 CDI BlueEFFICIENCY extended with prototype
sensors and additional computing power to enable the development of automated driving
functions is considered for the experiments. All used sensors are production or close-
to-production sensors given the current state of the art for sensor technologies in the
automotive industry for driver assistance systems. The demonstrator is used to develop
and show automation in close-distance scenarios within the AdaptIVe project. For the
experiments we rely on four short range radar sensors at the vehicle corners, providing
a 360◦ environment perception. The sensors operate at 76 GHz and have a coverage up
to 40 m with an accuracy below 0.15 m. The sensors single field of view is 140◦ with an
accuracy below 1◦.
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Figure 3: Occupancy grid map, which was built by the proposed SLAM algorithm. A dark
color indicates a low occupancy probability while a light color indicates a high occupancy
probability. The driven ground truth trajectory is visualized in green and the estimated
trajectory of the algorithm is visualized in red.

At first, the algorithm is evaluated on a dynamically changing parking lot scenario. This
environment is especially challenging, because accurate mapping is more difficult due
to the unpredictable changes of the environment. Furthermore, the driven trajectory is
approximately 400 m long so that the drift of the odometer takes heavily into account.
The dataset contains 14 sequences at different times and weather conditions. Ground
truth is acquired by the iMAR iTrace F400-E, a precise DGPS receiver combined with
INS sensors, with an accuracy of up to 2 cm. The recorded highly accurate ground truth
trajectory is used for error calculation with respect to the estimated trajectory of the
algorithm. We distinctly split the dataset in a training set, which contains 5 sequences,
and a test set, which contains the remaining 9 sequences. The training set is used to find
optimal parameters which deliver the best results in all 5 sequences. We perform multiple
parameter sweeps, which cover parameters of the clustering to determine the estimation
winner, the distance transformation and the particle filter. The parameters are selected
to achieve a trade-off between high accuracy and low computation time. The algorithm
is evaluated on the test set with the determined parameters. The resulting RMS and last
position error at the end of the sequence is shown in Table 1 for each sequence of the test
set.

Table 1: RMS and last position error for each sequence of the first scenario

Sequence 1 2 3 4 5 6 7 8 9

RMS error [m] 0.492 0.310 0.584 1.619 1.057 0.449 0.790 0.683 0.296

Last error [m] 0.524 0.358 0.056 0.472 0.379 0.471 0.220 1.013 0.169
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Figure 4: Estimation error over time (left) and as a box plot (right). The error con-
tinuously grows to a maximal error of 1.117 m, when the vehicle is furthermost from the
starting position. In the second half, the environment is partially known which leads to
a continuous reduction of the estimation error.

For further evaluation, the sequence number 3 with a RMS error of 0.584 m is used.
This decision is reasonable, because the RMS error of this sequence is the median RMS
error of all sequences. The resulting grid map of this sequence is shown in Figure 3.
The created occupancy grid map is visualized as a grayscale image. The localization
provides an estimated trajectory, which is drawn in the map and colored red. The ground
truth trajectory is colored green. Figure 4 shows the estimation error over time and in
a box plot. At first, the error grows continuously, because the environment is unknown.
Therefore, the algorithm depends on the odometer, which has a constant drift over time,
since no map is available yet. During the second half of the drive, the algorithm can use
the built map to reduce the localization error to 0.0560 m at the end of the sequence.
The second scenario is a driveway situation. Figure 5 shows a top-down view of the
environment in the upper right corner. The challenge in this scenario is, that the vehicle
drives the same route several times. This dataset provides ground truth from a tachymeter
Leica MS50 which is tracking a prism on the roof of the car with an accuracy below 5
mm. The resulting grid map is shown in Figure 5. Figure 6 shows the error over time
and in a box plot. The overall RMS error states at 0.1822 m and the error at the end
of the sequence is 0.1693 m. These errors are calculated by projecting the estimated
poses on the ground truth trajectory. This is necessary, because the tachymeter does not
provide adequate time information. Therefore, the error states the minimal distance to
the estimated trajectory.
The evaluation is performed offline on a desktop computer with an Intel Core i7-3930K
CPU with 3.20 GHz and 24 GB RAM. Under these conditions, our algorithm performs
with a mean computation time of 45 ms per frame. Considering a sensor measuring rate
of 20 Hz, the algorithm is real-time capable.
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Figure 5: Occupancy grid map for the second scenario. The driven ground truth trajectory
is visualized in green and the estimated trajectory of the algorithm is visualized in red.
The dashed white line visualizes the odometer trajectory. The image in the upper right
corner shows the environment from a top-down view.

Figure 6: Estimation error over time (left) and as a box plot (right) for the second scenario.
The maximal error in this scenario states at 0.4723 m. The reason for the considerably
smaller errors compared to the first scenario is the strength of the algorithm, if the vehicle
drives several times through the same environment.
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5 Conclusion

This paper provides a robust and cost-efficient method to solve the Simultaneous Local-
ization and Mapping (SLAM) problem in real-time. The algorithm uses radar sensors
to perceive the environment and odometer measurements to get information about the
vehicle movement. Both information are used to localize the vehicle using a particle filter,
while simultaneously build a 2D occupancy grid map of the environment. Experimental
results prove the high accuracy and real-time capability of the algorithm.
Future work will concentrate on ways to compensate the oversaturation of the occupancy
grid. The oversaturation occurs if the vehicle drives multiple times in the same environ-
ment. The oversaturation leads to inconclusive object positions in the map, which can
cause high localization and mapping errors.
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