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SURE-Val: Safe Urban Relevance Extension and
Validation

Kai Storms∗†,Ken Mori∗†und Steven Peters†

Abstract: To evaluate perception components of an automated driving system, it is necessary
to define the relevant objects. While the urban domain is popular among perception datasets,
relevance is insufficiently specified for this domain. Therefore, this work adopts an existing
method to define relevance in the highway domain and expands it to the urban domain. While
different conceptualizations and definitions of relevance are present in literature, there is a lack of
methods to validate these definitions. Therefore, this work presents a novel relevance validation
method leveraging a motion prediction component. The validation leverages the idea that
removing irrelevant objects should not influence a prediction component which reflects human
driving behavior. The influence on the prediction is quantified by considering the statistical
distribution of prediction performance across a large-scale dataset. The validation procedure is
verified using criteria specifically designed to exclude relevant objects. The validation method
is successfully applied to the relevance criteria from this work, thus supporting their validity.
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1 Introduction

Automated driving (AD) is currently viewed as a key emerging technology. Among the
benefits which are attributed to AD are increased comfort, availability of mobility and
foremost an increase in safety for the traffic environment [11]. However, safety assurance of
AD remains a challenge. Whilst first SAE level 3 AD system (AD) are already available [2]
for parts of the highway domain, a current focus in research is the urban domain [13].

One method supporting safety assurance by offering potential benefits regarding the
testing effort is modular decomposition [4]. Under this method, all modules of a classic
Sense-Plan-Act architecture and its derivatives, such as the perception module, need to
be evaluated individually [38]. For this individual evaluation, it is imperative to have
knowledge about what is relevant to the subject module, both for completeness and
efficiency.

Therefore, in this paper we will consider relevance for the perception module and how
it can be evaluated. Current approaches face a variety of problems. Most methods lack
generality because they are specific to either one module or a limited set of scenarios.
These methods cannot be applied to other modules or scenarios without requiring major
redesign efforts.
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Furthermore, a lack of consistency between relevance results must be noted among
different methods. One reason is the lack of validation in previous methods. This situ-
ation is exacerbated by the fact that the current state of the art does not provide any
methodology to validate relevance criteria.

This paper will expand on the previous work of Mori & Storms [30], henceforth de-
noted as Stuctured Analysis for Conservative Relevance Estimation in Driving context
(SACRED). Firstly, the Safe Urban Relevance Extension (SURE) is introduced. As main
contribution, we present a novel methodology that enables the evaluation of validity for
a given relevance selection method. This methodology is applied and verified using the
expanded method for the urban domain.

2 Related Work

This section covers related works with respect to concepts of relevance as well as their
respective validation.

2.1 Relevance

Previous conceptualizations of relevance can be broadly categorized in heuristic approaches,
formal approaches and concepts based on a downstream task.

Heuristic approaches typically implicitly define relevance by excluding certain objects
based on simple criteria. One application is the datasets used to develop and test per-
ception functions. Here, thresholds on distance [42] or number of points from lidar and
radar [9] are applied during annotation. Heuristics are also applicable when defining
perception metrics [21]. Criteria such as distance [9], height in camera image plane and
occlusion [18] are used by dataset metrics. Other metric proposals in literature follow
similar approaches such as leveraging the distance to the ego vehicle [27] or the ego tra-
jectory [8]. Similar ideas are found in neural path planners where relevance is implicitly
defined by the network input. Commonly, inputs are restricted to a certain geometric
region [6, 19, 34, 40] or a limited number of objects [1, 12, 17, 23,44].

Formal approaches provide an explicit consideration of relevance based on require-
ments. Typically, relevance is related to safe behavior of the vehicles by considering
reachability or formal planners [21]. Reachability leverages kinematic constraints to de-
fine potential collision objects as relevant [3, 43]. Other work leverages formal planners
either from preexisting work [45] or by directly specifying context-dependent behavioral
requirements [30, 37, 41]

In order to avoid manual specification of relevance, the planning Kullback-Leibler
divergence (PKL) [35] and following work [20, 37] propose to leverage neural planners.
Here, relevance is conceptualized and quantified as magnitude of the effect of an object
on a downstream planner implementation [35]. However, the validity of this approach is
limited to the specific implementation of the planning algorithm [36].

Overall, various approaches for the definition of relevance are proposed and reach dif-
ferent conclusions. Notably, there is currently no reconciliation of formal and downstream
implementation based approaches.
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2.2 Relevance Validation

While different approaches have been suggested to conceptualize object relevance, the
validation of these concepts is currently underexplored. Perception datasets such as [18,
42,47] do not consider the validity of the perception metrics with respect to safety. Other
datasets discuss metrics with respect to the weighting of different attributes [28] or validate
the ability of the metric to produce a ranking between different types of detectors [9]

Some analytic approaches rely exclusively on plausibilization by visualizing selected
scenarios without further validation [37, 43, 45]. In other cases, no further attempts to
verify or validate the results are made [14].

The usage of planners in a closed loop simulation has been proposed [43] and also
executed for safety aware prediction metrics [24]. However, incorporating a planner into
the pipeline incurs the potential of errors in the planner which questions the validity [29].
The results of the PKL metric are verified and validated in two different ways. A first
verification step argues plausibility by showing that the metric is sensitive to distance and
velocity as intuitively salient features. Furthermore, a human evaluation is conducted by
Amazon Mechanical Turk workers, showing an 80% preference for the PKL metric over
the nuScenes detection score (NDS).

Overall, current validation approaches for validating relevance criteria are lacking.
Furthermore, the suggested approaches generally focus on relative ranking and therefore
do not provide acceptance criteria.

3 Methodology

We suggest the following approach for defining and validating relevance in this work.
First, a formal analytic method of relevance is selected to facilitate interpretability. Next,
a neural trajectory prediction model is utilized to validate the results of the formal model.
It will later be shown that neural networks are suitable for validation if large-scale datasets
are leveraged to consider uncertainties in the prediction outcome.

As formal relevance method, the prior SACRED method [30] is selected. This method
provides a conservative estimation aiming to provide a complete set of relevant objects.
The property of completeness will also be focus of the later validation procedure. In ad-
dition, the relevance method offers the benefit of few requirements regarding environment
knowledge.

4 Application of Relevance Selection Method

This section follows the SACRED relevance method defined in [30]. First, a minimum
specification is provided. Next, interactions are decomposed into multiple scenarios for
each of which relevance criteria are formulated.

4.1 Specification

In order to apply the relevance methodology, it is first necessary to specify the system
and the use case.
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The system specification follows SACRED [30]. A Sense-Plan-Act architecture is
assumed with an object list as interface between perception and planning. The output
trajectories of the planner must generally adhere to physical and legal requirements. This
work focuses on the task of collision safety. In order to fulfill these requirements, the
system provides guarantees regarding its capabilities. After a specified reaction time, the
system is required to act in accordance with the requirements. In order to do so, the
system is capable of providing a minimum guaranteed braking deceleration as well as a
minimum guaranteed acceleration.

Currently, testing of perception is mainly performed on datasets such as [9] which
mainly consider urban environments. Therefore, the use case is selected to be the appli-
cation in the urban domain. This use case serves to expand the ideas from the highway
domain to more complex interactions.

4.2 Decomposition

The next step in determining relevance is the decomposition of the use case into functional
scenarios. As in SACRED [30], the distinction is made using polar coordinates for the
relative velocities, distinguishing radial and tangential scenarios (first letter of abbrevi-
ation). Depending upon whether the ego is moving towards or away from the object of
interest (OOI)(second letter of abbreviation) and whether the OOI is moving towards or
away from the ego (third letter of abbreviation), the four radial scenarios R.TA, R.AT,
R.TT and R.AA are distinguished. The tangential scenarios are distinguished depending
on whether the OOI is moving towards or away from the ego vehicle. This is described
by the two scenarios T.XT and T.XA.

The results for the R.TA, R.AT, R.AA and T.XA scenario are identical to SA-
CRED [30] and are thus not repeated here. However, the R.TT and the T.XT scenario
require additional considerations to consider the urban environment. In order to operate
in an urban environment a vehicle needs to be able to pass static obstacles by entering the
opposite lane and to traverse intersections. Overtaking dynamic objects is excluded to
limit complexity, since it is not required to fulfill a driving task. These are considered by
modifying the R.TT and the T.XT scenario respectively. Each of the scenarios requiring
modification to the relevance estimation is discussed in the following subsections.

4.3 R.TT’

First, the R.TT scenario is applied as in SACRED [30] without modification. For all
objects not considered relevant by the R.TT scenario, a modified R.TT scenario is used.
This scenario, shown in Fig. 1, hereafter called R.TT’, takes into account the case of
passing a static object.

Variables follow the notation from SACRED [30] with three optional indices. The
first index identifies the object, with 1, 2 and 3 denoting the ego vehicle, opposing vehicle
and static object respectively. The second index gives the frame of reference, either r for
radial or t for tangential. The third index denotes the state.

We extend the SACRED method [30] which only considers pairwise interactions. First,
the static object is considered as OOI. Since the OOI is static, the R.TT and R.TA are
equivalent. In order to distinguish the R.TT’ scenario, the static object has to be relevant
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Figure 1: Sequence and variables for the R.TT’ scenario.

according to either scenario. Arbitrarily selecting R.TA requires the distance to the static
object d1,r,0 to be less than the sum of reaction and breaking distance:

0 < d1,r,min = d1,r,0 − s1 − s3,r − v1,r,0 t1,r +
1

2
amaxt

2
1,r −

(v1,r,0 + t1,ramax)
2

2a1,r,b
(1)

The R.TT’ scenario is applied if all following conditions for the initial positions ri,0
and velocities vi,0 are fulfilled:

• Ego moving towards static object: (r⃗3,0 − r⃗1,0) · v⃗1,0 > 0

• OOI moving towards static object: (r⃗3,0 − r⃗2,0) · v⃗2,0 > 0

• OOI located behind static object: (r⃗3,0 − r⃗1,0) · (r⃗3,0 − r⃗2,0) < 0

The scenario is described by the following considerations, according to worst case
assumptions. Within the reaction time, the ego vehicle brakes. This results in a distance
covered and velocity as defined in (2) and (3). The end time of the braking maneuver t1,b
in (4) is equal to the reaction time or the time to standstill if less.

d1,b = v1,r,0t1,b −
1

2
amaxt

2
1,b (2)

v1,r,b = v1,r,0 − amaxt1,b (3)

t1,b = min

{
t1,r ,

v1,r,0
amax

}
(4)

After the reaction time, the passing maneuver is initiated with a lateral movement
to the opposite lane, followed by accelerating with the guaranteed acceleration. After
passing the static object, the ego vehicle performs a lateral movement back to its initial
lane, thus concluding its maneuver. The durations of the lateral lane change τ1,l and
acceleration τ1,a are defined in (5) and (7). The final velocity after accelerating v1,a is
given by (6).

τ1,l = 2

√
s3,t + s1
a1,g

(5)
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v1,r,a = v1,r,b + a1,gτ1,a (6)

τ1,a =
−v1,r,b +

√
2a1,g(2s1 + 2s3,r) + v21,r,b

a1,g
(7)

The final distance the ego vehicle traverses during the scenario is defined in (8) as sum
of the individual maneuvers.

d1,e = d1,b + v1,r,bτ1,l + d1,a + v1,r,aτ1,l (8)

Throughout the scenario, the opposing vehicle performs the maximum acceleration
towards the ego, yielding (9) and (10) with (11).

d2,e = v2,r,0te +
1

2
amaxt

2
e (9)

v2,r,e = v2,r,0 + amaxte (10)

te = t1,r + 2τ1,l + τ1,a (11)

Given the resulting distances and velocities of the defined events, the relevance of the
opposing vehicle can then be determined by using them as the initial values for R.TT
from SACRED [30] as defined in equation (12).

0 < dmin = (d0 − d1,e − d2,e)− s1 − s2 − v1,r,a t1,r

− 1

2
amaxt

2
1,r −

(v1,r,a + t1,ramax)
2

2a1,r,b
− v2,r,et1,b −

1

2
amaxt1,b

(12)

Exemplary scenarios yield distances in the hundreds of meters, well beyond typical
dataset annotation ranges. In addition, passing only needs to be considered given an ego
intention. Since this information is not available on datasets, this scenario is neglected
for the practical implementation.

4.4 T.XT’

This scenario covers tangential movements such as merging and intersections. The merg-
ing covered in SACRED [30] is extended to intersections encountered in the urban domain.

Within an intersection, there are two distinct maneuvers available to the ego vehicle
as shown in Fig. 2. It can either merely pass through (A) or turn onto the path of
another vehicle travelling (B). The requirement in either case is not to impede another
vehicle. The latter case represents the worst case since ego vehicle must not only leave
the intersection, but additionally accelerate to an adequate speed.

Thus, the worst case in an intersection is adequately described by the T.XT scenario
from SACRED [30]. The main difference is that the lateral distance to the travelling
direction of the other vehicle can be arbitrarily large unlike for the case of the highway
domain. Therefore, the ego vehicle has the opportunity to avoid entering the intersection
by braking in time. The corresponding braking distance is:
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Figure 2: Worst-case intersection and variables in the T.XT’ scenario.

s1,⊥,b = v1,⊥,0t1,r +
v21,⊥,0

2a1,⊥,b

(13)

Additionally, we assume the location of the intersection to be unknown. Therefore,
the intersection may be closer to the ego than the heading of the other vehicle. In the
worst case, the other vehicle would perform a maximum lateral acceleration towards the
ego vehicle to reach the intersection. The corresponding lateral distance traveled with the
corresponding braking time of the ego vehicle is:

d2,⊥ =
1

2
amaxt

2
1,b (14)

t1,b = t1,r +
v1,⊥,0 + t1,ramax

a1,b
(15)

Considering these two components, the maximum lateral distance for which the merg-
ing scenario from SACRED [30] is considered is limited to:

r1,⊥,0 < v1,⊥,0tr +

√
v21,⊥,0

2a1,⊥,b

+
1

2
amax

[
t1,r +

v1,⊥,0 + t1,ramax

a1,b

]2
(16)

If this equation is fulfilled, the merging scenario from SACRED [30] is applied. Oth-
erwise, the respective object is considered irrelevant according to this scenario.

5 Validation

This section discusses the validation of the results presented thus far. First, some pre-
liminary discussion relating to prior work is shown. Next, the approach of this work is
presented. Finally, the approach is applied and verified.
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5.1 Preliminaries

As noted in previous sections, the validation of relevance criteria has received limited
attention with no generally accepted methodology available. Previous relevance concepts
either take an argumentative approach or include a concrete downstream planning task.
In addition, the notion of a human baseline is present in one work [35]. We believe that
reconciliation of these complimentary approaches is required in order to argue validity.

One basis for the proposed validation approach is the human baseline. This idea has
previously been applied for accident rates of human driving performance [25,26,33] as well
as for perception performance [39]. Works incorporating downstream planners implicitly
also include this concept. However, planning goals may include additional aspects other
than imitating human behavior [6] such as infractions, mission goals [16] and comfort [10].
Therefore, these goals are ambiguous and lack consistent evaluation metrics [10].

5.2 Proposed Method

We conceptualize relevance validation by considering the human behavior as baseline.
Ideally, the influence of removing objects considered irrelevant might be studied in driv-
ing simulators to directly quantify the behavioral changes in human subjects. To avoid
the substantial costs such an approach incurs, we propose to approximate human driv-
ing behavior with a motion prediction algorithm. This approach follows the approach
proposed in [30] which is adapted from [35]. A motion prediction algorithm has several
advantages over using a path planning algorithm. The objective of the motion prediction
is unambiguous and can be evaluated in an open-loop setting with real-world data without
relying on a simulation environment. This work uses the predictor as proxy for human
behavior rather than as component to create a full AD pipeline as in [35]. Additionally,
this work explicitly quantifies the prediction performance as opposed to prior work which
explicitly or implicitly assumes the planner to be valid [24, 35].

The validation procedure consists of running the prediction network with different
inputs. Predictions are calculated multiple times for each input to account for potential
uncertainties and non-deterministic elements of the prediction. The validation proce-
dure only considers the empirical cumulative distribution function (ECDF) of predic-
tion errors across a large-scale dataset to avoid local performance issues and effects of
non-deterministic predictions. A relevance criterion is considered valid if the prediction
error distribution remains unchanged between the original input and the filtered input.
Whether two distributions are identical is evaluated using the Cramer-von Mises test for
two empirical distributions [5]. This test provides a confidence value, based on distribution
similarity and sample size, for which an acceptance criterion is required.

To study the utility of the proposed validation method, an implementation on the
nuScenes dataset [9] is performed. All experimental results are reported for the standard
val split. The prediction network is selected from the nuScenes motion prediction leader-
board [32] among entries with an open implementation. We select the PGP algorithm [31]
as implemented by [15] using the default settings. The implementation filters inputs by
location in a square region from [-20 m, 80 m] in longitudinal and [-50 m, 50 m] in lateral
direction. This filtering is maintained for all experimental conditions with the relevance
filtering criteria only being additionally applied. The prediction errors are evaluated using
the average distance error (ADE) metric for the top 10 trajectories.
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5.3 Results

The prediction network is run ten times each with four different inputs. Firstly, multiple
prediction runs with all inputs abbreviated as ‘A’ are compared to each other to determine
the prediction noise. The ECDF of this noise is depicted in Fig. 3, showing that the
detector exhibits significant noise averaging at 0.33 m. The error distribution is depicted
as ECDF averaging at 0.96 m. Noise also affects the error distributions. Therefore,
different runs using identical inputs with all objects (A-A) are compared using statistical
tests for equality of distribution. The results are displayed in Fig. 4 as box plot of p-values
for different runs. Since the distributions are similar despite the presence of noise, the
p-values are high. This provides a reference for the p-values when accounting for noise.

To verify the validation procedure, two artificial verification inputs abbreviated with
‘RV’ and ‘RV2’ are constructed and compared with the original input. The first is simply
deleting all objects in a scene. The second is to delete all vehicles which are within 2 m
from the heading axis of the ego vehicle. Both inputs are constructed to be implausible
relevance criteria. The latter filters out 5% of the objects within the heuristic input
region of the prediction network, thus filtering out fewer objects than the relevance criteria
developed in this work. The error distributions in Fig. 3 exhibit general visual similarity,
all being larger than the prediction noise. Nevertheless, the enlarged image indicates
that the verification inputs differ from the case using all inputs. Testing for equality
of distributions between verification and all inputs (A-RV and A-RV2) in Fig. 4 shows
p-values which are orders of magnitude smaller than for A-A. The large spread in p-
values is a consequence of prediction noise. Average p-values are below the exemplary
threshold value of 0.005 [7]. This indicates a high confidence that the error distributions
are different for the verification input and all inputs. Since the prediction is impacted by
the verification input, the verification criteria are successfully identified as invalid.

Similar to the verification inputs, the prediction is performed on the input filtered
according to the relevance criteria of this work abbreviated as ‘R’. The relevance criteria
filter out 10% of the objects included within the heuristic input region of the prediction
network. Fig. 3 shows that even with an enlarged image, the distributions appear visually
similar. The results of testing for equality of all and of relevant inputs (A-R) are shown in
Fig. 4 The p-values are similar to A-A, indicating that any dissimilarity in error distribu-
tions is within the range caused by noise. Since the prediction performance is unaffected,
the relevance criteria of this work are not falsified. Accordingly, the validation results
support the relevance criteria from this work.

6 Discussion

This section discusses the results of both the validation method proposed as well as the
validation of the extended urban relevance model.

6.1 Validation Method

The proposed validation method relies on a motion prediction network. Compared to
PKL [35], fewer requirements are imposed upon the motion prediction. Discrete output
trajectories and non-deterministic implementations are applicable without modification.
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Figure 3: ECDF prediction error as ADE
for top 10 trajectories for different inputs
and noise for multiple runs with same in-
puts.
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Figure 4: Boxplot of p-values testing for
equality of distribution for pairwise combi-
nations. Exemplary threshold indicated by
red dashed line.

The method explicitly considers the global performance of the prediction, showing
the error to be in the order of 1 m. Notably, the global performance is robust to local
noise which may appear in the prediction for a single scenario even with identical inputs.
We suspect the inherent uncertainty of future trajectories causes stochastic behavior in
the predictions. Since the underlying trajectory distribution is unknown, the prediction
performance can only be assessed over a large number of scenarios. Conversely, this
means that the local prediction performance in a single scenario is not meaningful since
it cannot be disentangled from the stochastic component. Therefore, the local stability of
the prediction as used by PKL [35] is not suited as relevance measure for some prediction
networks. This is visible in the noise results as exhibited by a non-deterministic prediction
implementation as used in this work.

The validation method of this work is successful in falsifying the verification input.
The global performance of the prediction deteriorates, which agrees with the intuition
that the vehicle directly in front is relevant to the vehicle. This verification succeeds
despite the fact that only 5% of the objects are filtered out, as opposed to the 10% for
the relevance criteria. However, further study is required to understand the impact of
thresholds for p-values. In addition, further research is required to determine to what
degree invalid samples can be resolved in large datasets. However, higher sensitivity of
the validation may be possible if subsets of specific scenarios are considered individually.

6.2 Extended Urban Relevance Model

Generally, we first develop analytic relevance criteria which are then reconciled with a
prediction component at validation. We consider this approach to have the following ad-
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vantages. Firstly, no complex neural networks are required when applying the relevance
criteria. This is beneficial with regards to implementation effort [48] and computational
resources. Additionally, neural networks are prone to failures due to their lack of robust-
ness [22, 46] which may impact directly determining relevance. However, the proposed
approach is robust to these failures since the distribution across many samples is consid-
ered. Additionally, the analytic relevance criteria are fully interpretable.

These criteria are developed by applying an existing method to derive relevance. The
method is successfully applied to extend the results to the urban domain. Applying the
proposed validation method on a large-scale dataset shows that the prediction perfor-
mance is unaffected by the relevance criteria proposed in this work. The validation is
currently restricted to a single prediction network and one dataset. For this case, the
validity of the relevance criteria is supported. However, only 10% of objects can be ex-
cluded from the data based on relevance. It is currently not known if the specificity of
the relevance model can be improved while maintaining validity.

7 Conclusion and Outlook

This work presents SURE-Val, the extension of a recent method to derive relevance to
the urban domain. For this purpose, the methodology is applied to the intersection
and the passing scenario. Additionally, a novel method for validating analytic relevance
criteria using a motion prediction is introduced. The relevance criteria and the validation
method are applied on a public dataset using an exemplary motion prediction component.
The verification of the validation procedure shows that the validation method itself is
feasible. At the same time, the validation results support the relevance criteria obtained
in this work. Additionally, the analytic relevance criteria are computationally efficient,
interpretable and agnostic with regards to the implementation of downstream components.
We hope that both the relevance criteria as well as the validation method can serve as
reference to consider these aspects more explicitly in the future.

For future research, it is desirable to further explore the limitations of the relevance
criteria and their validation. One aspect is the impact of the prediction architecture on
relevance. Another aspect is the consideration of datasets including more varied scenar-
ios. Further validation on such datasets which include unusual and dangerous driving
situations is required to gain confidence in relevance criteria in general.
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