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Transfer Learning Techniques Using Simulation Data
For Machine Learning Automotive Radar Systems

Felix Rutz∗ , Ralph Rasshofer † und Erwin Biebl‡

Abstract: For a reliable detection and classification of vulnerable road users in modern auto-
motive radar systems, the latest research introduces machine-learning (ML) based algorithms.
However, suitable training datasets for ML systems based on real-world radar measurements are
rarely available or lack specific raw radar data. Different approaches based on transfer-learning
methods from data generated by a simulation framework for the range-Doppler-representation
of radar measurement data are researched. In particular, influences of dataset size and sample
quality, as well as different transfer learning approaches concerning the performance of the ML
system in the radar data domain, are examined.
Index Terms: Automotive Radar, Machine Learning, Radar Dataset Simulation, Transfer
Learning

1 Introduction
The EU Vision Zero road traffic safety initiative seeks to decrease road injuries and fa-
talities by 2050 [1]. Therefore, advanced driver-assistance technologies are required in
modern automobiles to achieve this goal. The foundation of these systems to perform
successfully is a thorough sensing of the vehicle’s surroundings. Hence, radar and lidar
scanners, front cameras, and ultrasonic probes comprise a basic sensor ensemble enabling
a multimodal data-driven depiction of the surrounding automobile environment. The
sensor-specific information obtained is subsequently analyzed and optimized for different
safety-related applications, such as autonomous emergency braking, blind spot detection,
and higher automated driving capabilities [2].

With the implementation of advanced conditional and automated driving functions, the
various raw sensor data are often combined and evaluated by elaborately trained machine
learning systems. Their performance levels are unprecedented compared to standard
signal-processing methods. For example, a deep learning system is used as an evaluation
framework joining the vision and the motion planning domain for improved pedestrian de-
tection [3]. However, the application of artificial intelligence-based functions is not limited
to safety-related systems. In [4], a deep learning system regulates a complex automatic
torque converter transmission, outperforming the control performance of classical control
approaches.
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2 Related Work
For improved protection of vulnerable road users, radar systems, camera devices, and
lidar sensors have been investigated for reliable identification and categorization of target
objects. Comparing these available measurement devices, the advantage of radar sensors
is their least-imperishable characteristic in changing weather or lightning conditions, even
on long detection ranges, as shown by [5]. However, the advantage is not limited to axial
perception, as component supplier Bosch lately introduced synthetic aperture functional-
ity to the vehicle for a detailed lateral perception [6].

The latest generation of commercially available vehicular long-range radars uses continu-
ous frequency-modulated ramps for target detection in the 76 – 77 GHz band [7]. This
frequency band allows the use of broadband waveforms, which have advantageous effects
on range and velocity resolutions. Further, the angular resolution is enhanced by antenna
arrays due to the small mechanical dimensions corresponding with the required wave-
length.

In order to meet the requirements of self-driving vehicles in terms of radar sensor charac-
teristics, scaling the radar parameters, for example, by higher bandwidths, is not sufficient.
In order to meet the demands of environment sensing, fundamentally different approaches
are required. For this purpose, research is being conducted in the field of signal processing
on more complex algorithms. Approaches include the evaluation of large array structures
using sophisticated models for improved angular resolution [8], as well as the use of alter-
native radar modulation techniques [9].

The rising capabilities of signal processing methods based on machine learning (ML) is
another promising approach, further enabling the combined detection and classification of
remote objects rather than only detecting the presence of an unclassified canonical target.
In [10] the range-Doppler-representation of radar measurements is used for detection tasks,
whereas [11] presents a detection algorithm using the range-azimuth spectrum instead.

Common to machine-learning approaches is the limited availability of sufficiently large
training datasets. Hence, the presented deep neural network algorithms are often tai-
lored to work well on a specific input dataset limited to the situational events represented
within the learning set. Therefore, a direct comparison of different approaches remains
impossible, as datasets and networks are incompatible with each other [12].

For a reliable inference and generalization to unseen driving scenarios, a sufficient training
database with ideally all possible situations as data samples is required for all ML-based
approaches. As such datasets are generally unavailable, learning from computer-generated
radar data is under research. We, therefore, create simulation datasets and use them to
train a computer vision object detection system based on the YOLOv5 framework [13]
on the radar data domain. Different training experiments focus on the effects of using
various simulated dataset sizes. The results are evaluated for sample quantity and quality
of the dataset. The corresponding ML models are then separately re-trained with input
data based on radar sensor measurements using different transfer learning approaches to
improve the system predictions.
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Rather than solely adapting the ML model to a new domain by freezing specific layers
as feature representations and re-training them with different datasets as depicted in [14],
we also introduce modifications to the feature space so the model adapts well to a slightly
different domain within the same training run.

3 Evaluation Metrics
For the evaluation of the machine learning system, the precision, recall, and mean average
precision metrics are used following the remarks by [15]. The precision is defined as the
ratio of true positives (TP) and the total number of predicted positives as a sum of the
true positives and false positives (FP):

Precision =
TP

TP + FP
. (1)

The precision metric expresses the accuracy of the neural network as the proportion of its
correct predictions to all positive predictions. Recall or sensitivity is defined as the ratio
of true positives and the total of ground truth positives as a sum of the true positives and
false negatives (FN):

Recall =
TP

TP + FN
. (2)

The recall metric is related to the ability of the machine learning model to find all the pos-
itive samples from the dataset. The classification system is characterized by merging both
parameters into the precision over recall curve. The area under the curve is summarized
as a single number used as a numeric performance indicator referred to as the average
precision (AP) for each class. Deriving the mean of the AP over all distinct curves for
each class leads to the mean average precision (mAP) as a general evaluation metric of
an object detection system.

4 Dataset Generation from Simulation
The ML framework model performance is significantly determined by data quality and
quantity used for supervised training. For the ML model examinations, we use two sep-
arate datasets. One dataset was derived from measurements with the radarbook experi-
mental platform. The device provides a millimeter-wave radar measurement setup with
raw data processing capabilities in the 76 – 77 GHz band, incorporating similar properties
in frequency, modulation schemes, and bandwidth as standard automotive-grade radar
sensors. The semi-manual labeling process is described in detail by [16].



70

15. Workshop Fahrerassistenz und automatisiertes Fahren

The primary population of the processed measurement samples is split into a training and
a test set for evaluating the ML model on unseen data. The training set is derived from
2445 pedestrian labels, 1527 bicycle annotations, 785 automobile boxes, and 562 frames
with empty boxes. The test set contains 204 pedestrian samples, 553 bicycle annotations,
and 95 automobile labels. The dataset is assumed to be relatively small. Regarding class
distribution, the allocations of the target classes within the distinct subsets are pretty
unbalanced.

Nevertheless, processing real-world sensor data and deriving large and balanced datasets
is an elaborative and cost-intensive task. Identifying and labeling rare but dangerous
driving scenes for their representation in the training dataset is a nearly unachievable
undertaking, often also accompanied by legal implications.

Instead of manually labeling more data from an actual radar sensor, a simulated dataset is
created based on the MATLAB simulation framework introduced by [17]. The cyclist, ve-
hicle, and pedestrian objects are modeled as a sum of their characteristic reflection points.
Each point target is assigned a unique position, velocity, and associated characteristic
backscattering cross-section. Based on the different reflection models for pedestrians, bi-
cyclists, and vehicles, the simulation framework calculates a radar time-domain baseband
signal using the radar range formula. Multi-path propagation is excluded in order to
reduce the complexity of the simulation.

The simulated sensor data is then translated into range-Doppler-map representations
with appropriate ground-truth annotation labels. The synthetically generated dataset
has three times as many samples as the sensor-based dataset derived from measurements,
with 18 300 sample images.

A total of 12 200 samples from simulated data are used for training. The training example
set contains multi-labeled samples with 8311 pedestrian labels, 10 309 bicycle annotations,
and 9230 automobile boxes. The test set consists of the remaining 6100 samples. The
sample distribution per class is more balanced within the simulated radar dataset than the
measurement-based annotations. Table 1 compares the total number of range-Doppler-
map samples and the total number of class labels for the three class entities, car, bicycle,
and person, between the original sensor dataset and the simulated one.

Table 1: Comparison of manually labeled and simulated datasets

Radar Sensor Dataset Simulation Dataset

Total sample count 4889 18 300
No. of person labels 2649 13 219
No. of bicycle labels 2080 16 226

No. of car labels 880 12 946
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5 Analysis of Simulation Data
The ability of a machine learning model to generalize and fit a dataset strongly correlates
with the dataset size and data quality itself. Based on the Bagging method [18], N multi-
ple training sets from the 12 200 simulation base population X have been drawn. However,
the samples were drawn without replacement for data quantity and quality analysis con-
cerning the ML model prediction, but with increasing the total subset size N in a range
from 500 to 12 000. The step size between two dataset iterations is 500 additional samples.
This prevents possibly faulty samples from being drawn into a training set multiple times.

For every subset, a separate ML model was trained from scratch. Fig. 1 depicts the re-
sults of the corresponding mAP of the resulting ML models in dependence on the different
training datasets.
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Figure 1: Evaluation of mean Average Precision with the total dataset sample size based on
simulated data

On the smallest available dataset containing only 500 training samples, the ML system
reaches a mean average precision of 0.62. The metric increases steeply with every increase
of the training dataset until it reaches a pivot point in mAP of 0.95 using a training dataset
of 6000 samples. Further experiments only correlate with minor improvements in the over-
all mAP score when increasing the training database size, reaching a mAP limit of 0.97
using 12 000 training examples.

The corresponding parameter models for the before-mentioned supporting nodes using 500,
6000, and 12 000 training samples are selected for further experiments. The mean aver-
age precision shows a high deviation at both system boundaries. Therefore, the detailed
precision-recall plots for each class for the smallest and largest datasets are examined.
Deriving from the definition of precision and recall, the combined plot summarises the
trade-off between the true positive rate and the positive predictive value for an ML model
[19]. Fig. 2 depicts both plots for training datasets containing 500 and 12 000 total sam-
ples.
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(a) Precision-Recall-Curve for 500 samples (b) Precision-Recall-Curve for 12 000 samples

Figure 2: Comparison of Precision-Recall-Curves for training sets including 500 and 12 000 total
samples based on simulation data

In a qualitative comparison of both graphics, the smaller dataset shows significant set-
backs in the total area covered by the precision over recall graphs for all three classes. The
most noticeable flaw is discovered for the bicycle class, resulting in a mAP value of 0.278
using 500 training samples. Contrarily, the area under the curve reaches its maximum
when training with 12 000 samples, leading to a nearly perfect precision over recall for all
classes.

Therefore, the dataset for the small-sized training set has been further investigated. Every
sample image from the small dataset was inspected by hand. In the total number of bicycle
instances, corresponding bounding boxes for 14 samples have been identified as misplaced.
Hence, the samples only contain background noise instead of the true target ground truth
representation. With an increasing number of training samples, the influence of misplaced
labels seems to be mitigated within the ML model. The reason for the misplaced bounding
boxes remains unclear. A likely explanation is an error during the transformation of
ground truth labels into a corresponding data format, as different ML algorithms require
different representations of ground truth labeling parameters.

6 Transfer to Measurement Data Domain
To implement an ML-based system in a vehicle, the models generated from simulation
data must also generalize in sensor measurement data. The underlying system parameter
weights from simulation data are therefore used to improve the generalization capabilities
in a slightly changed domain setting. The system needs to adapt to the environmental
radar data domain rather than purely classify data based on calculations excluding real-
world effects such as multi-path propagation. Assuming that many factors and model
weights leading to the results in simulation data also apply to the radar sensor data do-
main, the adaptation process of the ML model is referred to as transfer learning [20].
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In traditional machine learning, a specifically tailored algorithm is trained and imple-
mented for one detailed task using a curated dataset representing the problem. However,
this approach requires the unseen input data to share the exact distribution and feature
space with the available training data. This requirement is not fulfilled in most real-world
applications, as shown in the previous section comparing the sample distribution in the
range-Doppler-map datasets. Using transfer learning (TL) instead, the ML system can
re-use its knowledge and skills of a specific task to solve a problem in another target
domain. Therefore, the need for high-quality data in the target domain is reduced.

6.1 Transfer Learning by Updating Feature Representation
Following the explanations in [21], scalar feature weights represent knowledge in a machine-
learning model in a network of processing units. Each processing element implements a
nonlinear function, altering its input data with a specific weight. Multiple units form a
specific network structure, often consisting of subsequent layers. For transfer learning, as
many weights as possible are re-used from training in the source domain and fine-tuned
with a small amount of data in the target domain. During the target training process, the
element weights are updated, enabling the model to acquire more information to represent
the input data. Different weights need to be evolved depending on the chosen ML system
architecture.

Refined in detail by [22], two key aspects affect the outcome of feature adaptation, one
factor being the size of the target dataset. If the target dataset is small, overfitting in the
network is avoided by freezing as many layers as possible. Hence, the ML model relies
more on features extracted from the source set samples. The second factor is the similarity
between the source and the target dataset. With limited variations in the dataset samples,
faster fine-tuning results are achievable. Finding the optimal number of layers that need
to be updated or fixed during training is an incidental challenge in transfer learning. From
the presented model structure, different configurations of layers are being evolved during
transfer training runs with the target sensor dataset researched.

6.2 Transfer Learning by Feature Space Modification
Another approach for domain adaptation is presented in [23]. Instead of changing the
network weights using multiple training runs on various source and target datasets, the
sample set is expanded. By simply merging samples from both database populations
into a joint training dataset, the adjacent learning process by fitting an ML model from
scratch is compelled to derive a more general network representation, as samples from
both data domains are considered during the same training session. Due to the contin-
uous weight updates within each training epoch, the ML system focuses on identifying
underlying features common to all input samples. Hence, a suitable generalization of the
final model is achieved, and simultaneous overall training time is reduced. This straight-
forward approach is implemented and compared to the procedure based on updating the
feature representation using two distinct datasets.
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7 Transfer Learning Results
With the ML model based on 12 000 simulation samples, different transfer learning tech-
niques have been applied using the radar sensor data. The best-considered results from
the different approaches are compared with traditional ML training using only the sen-
sor dataset as a default baseline model. Table 2 summarizes the results of the distinct
transfer learning methods described before. For bicycle and car classes best results are
achieved by training the ML model from scratch using a mixed dataset containing sim-
ulated and real-world data. Nonetheless, transfer learning using distinct datasets yields
the best average precision for person class detection.

Table 2: Results of different transfer learning techniques

ML Training Approach AP (Person) AP (Bicycle) AP (Car) mAP@0.5

Trad. ML on Sensor Data 0.690 0.670 0.600 0.653
TL (Feature Rep.) 0.730 0.696 0.541 0.656
TL (Feature Space) 0.687 0.713 0.719 0.706

8 Conclusion
Different transfer learning techniques have been researched to improve ML model gener-
alization in automotive radar domain data. The additional parameter adaptation from
simulated radar domain data can mitigate the limitations of small sensor datasets for train-
ing. The simulation framework generates scalable datasets, including the corresponding
ground-truth labels, for pre-training quickly and reliably.

However, the decrease in mAP when transferring the model weights from the simulation
to the measurement data domain indicates that more underlying effective mechanisms
exist in the sensor radar domain. Nevertheless, transfer learning methods significantly
increase the algorithm’s performance compared to the default baseline model derived from
the traditional system training approach.

Depending on the distinct object class, precision is increased up to 11.9 percent using trans-
fer learning approaches for model generalization. The requirement for refining datasets
from raw sensor data containing an even distribution of common and rare events is re-
duced by adding adding enormous samples from simulation frameworks.

Future research focuses on further improvements in generalization by data augmentation
of sensor-based datasets by upsampling the total amount of available training pairs, which
is directly related to further reducing data sample collection efforts.
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