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Abstract: Sensor fusion is one of the trend topics in the automotive field, which aims to achieve

robustness by relying on the information from different sensors. But to achieve further progress

in this field, the availability or generation of multimodal data under different contexts is a vary

important topic. In this paper we focus in the description of the necessary methodologies to

generate such data considering Long-Range Automated Valet Driving scenarios, involving a

combination of urban and indoor driving scenarios, we devised two distinct methods. For the

initial approach, we utilized the installations present in the ISAFE Indoor Testing Facility at

CARISSMA (Technische Hochschule Ingolstadt) to gather data for situations in severe environ-

ments and supply the necessary references. The second approach involves producing data from

real-life situations using the prototyping vehicle of Expleo Germany GmbH. To accomplish this,

we equipped the vehicle with various sensors and examined techniques from the latest techno-

logical developments to decrease the burden of dataset generation while meeting sensor fusion’s

demands. In this work, we present both approaches and our results for the methods employed

to establish our data generation pipeline.

Schlüsselwörter: AVP, Sensors, Sensor-2-Sensor Calibration, Time Synchronization, Reference

systems.

1 Introduction

Long-range Automated Valet Parking (LAVP)[1] is an extension of the AVP function.
This service not only drives and parks autonomously in a parking facility like typical
AVP but also considers driving the vehicle from a drop-off zone far from the parking
facility’s entry. Therefore, this function encompasses more diverse scenarios. On one
hand, the system must cope with the challenges of urban environments, including dynamic
conditions and various weather elements such as rain and fog. On the other hand, it must
also manage the intricate maneuvering involved in enclosed parking situations.

Throughout the years, multiple datasets [2...13] have been made available to the public
for AD use cases due to the significant time and cost required to generate a dataset.
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These datasets have provided increasing sensor [2] and scenario [3] diversity, enabling the
research community to rapidly prototype for scene understanding. However, to the best
of our knowledge, there is currently no open dataset that accurately reflects the various
scenarios that describe our particular use case.

In this paper, we present two approaches to data acquisition that focus on a diverse
data set that can be collected in a time-efficient manner without extensive human interven-
tion. The initial approach is achieved by capturing mock scenarios within a controllable
indoor environment. By utilizing an indoor positioning system (IPS) to determine the
location of individual objects, the labeling procedure can be partially automated, ren-
dering it dependable even during undesirable weather conditions. The second approach
involves gathering data in real-world environments. In this regard, we present the sensor
setup we implemented in our prototyping vehicle, along with our sensor calibration and
time synchronization methods. We also introduce our reference system for the vehicle’s
ego-localization task indoors.

2 Related Works

Over the last years, dataset generation has been a focus of research in AD, especially
multi-modal datasets have become more and more important [3]. This is due to the
rapid progress in sensor development in the LiDAR and radar fields. There are numerous
techniques for creating a dataset to train and test driving-related algorithms, includ-
ing collecting data in real-world settings, simulated environments, or performing mock
scenarios. Real-world data acquisition provides realistic and authentic sensor data with
accompanying noise but poses the risk of generating edge cases or critical scenarios. Ad-
ditionally, annotating the data is a time-consuming and potentially incomplete process.
For example, under rainy conditions, Lidar can’t model the whole object of interest and
therefore, it is challenging to generate a 3D bounding Box that limits this object. With
simulated data, it is easy to generate critical and rare scenarios as well as annotations.
However, the sensor data obtained from LiDAR or radar might not be comparable with
sensors used in the actual vehicle. The Table 1 summarizes various real-world multi-modal
datasets as well as datasets that include adverse weather conditions. It is evident that the
majority of the datasets were collected during favorable conditions (cloudy or clear) or
did not label all collected adverse conditions [4]. Only a few, such as Rain WCity, focus
on collecting data during adverse weather conditions [5]. Additionally, parking scenarios
are either not explicitly mentioned in the literature or are absent from most datasets. Dif-
ferent types of sensors are being researched to overcome the challenges of AD. However,
to meet the automotive industry’s standards, factors such as reliability, durability, and
cost-effective manufacturing and maintenance must be considered. In this context, the
sensors with the potential to solve high-level AD, found in the datasets listed in Table
1, are radar, camera, and LiDAR. These different sensors can be used as a redundancy
solution, to enhance the reliability of the AD system, as well as a complementary solution
to extend the continuity of the AD system.

To fuse the information from the sensors properly, a calibration is a necessary step.
To ensure spatial consistency between sensor data, it is required to transform each sen-
sor’s readings into a common coordinate system, known as extrinsic calibration. It can
be accomplished through different methodologies. For example, the sensor data can then
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be optimized through manual alignment, as seen in Radiate [4] and partially in Nuscenes
[2] and EU long term [6], or the transformation between sensors can be estimated au-
tomatically using data from the sensors, which consists in target-based, and targetless
sensor-2-sensor calibration [7]. Target-based calibration utilizes a specially designed tar-
get with known dimensions to extract features from each sensor. The chessboard target is
frequently used to extract its corners as a 3D pattern. in Pixset [8], To estimate the trans-
formation matrices between the cameras, the authors employed a closed-loop optimization
method and used the perspective-n-point method for calibration between the camera and
LiDAR. For chessboard-based calibration on the Kitti dataset, they utilized their later
work [9]. Additionally, a unique target was created for the calibration of LiDAR, camera,
and Radar at Tu-Delft [10]. A further investigation of the calibration method is pre-
sented in section 3.2. Targetless calibration consists of two sub-methods: Motion-based
and feature-based calibration. Motion-based [11] calibration estimates the vehicle’s tra-
jectory from each sensor during various driving maneuvers and matches those trajectories
to estimate the transformation between the sensors. This technique is commonly used
for proprioceptive sensor calibration, including IMU or GNS. In the KITTI dataset, the
hand-eye method was applied to calibrate IMU and LiDAR [9]. The feature-based calibra-
tion [12] extracts similar features from each sensor within the shared scene and estimates
the transformation matrix by identifying correspondences between these features. In the
A2D2 dataset [13], calibration between the camera and LiDAR is enhanced by utilizing
edge correspondences.

Time synchronization of sensors is critical to the sensor fusion process. It is essential
to maintain temporal consistency between sensor data. Simultaneous sensor triggering is
the most accurate method for fusing sensors by simultaneously registering events on each
sensor. In the KITTI dataset, cameras are triggered simultaneously with LiDAR by a reed
contact in the LiDAR that activates the camera when the mechanical LiDAR’s scanner
faces forward. However, simultaneous sensor triggering is not feasible for the various
automotive-grade sensors. The alternative is to synchronize the sensors to a common
clock, and thus this method maintains the temporal correlation of events between sensors.
this method can be achieved either at the software level or at the hardware level. In the EU
long-term dataset, the LiDARs are synchronized at the hardware level by synchronizing
the clocks of each LiDAR with the acquired GPS signal. Another method is to timestamp
the sensor data with the time it arrives at the data logger. This method may be less
accurate than others as it includes a non-deterministic delay in data transmission.

As most of the datasets are generated outside, an RTK GPS is usually used for gen-
erating reference positioning of the vehicle. It’s an aviation-grade positioning system and
is considered the most accurate positioning system for outdoor use cases.

Data Annotation consists of labeling the different static and dynamic objects in the
vehicle’s surroundings, which are relevant to the AD function. It is done manually with
the help of annotation tools [14][9] [3]. It’s a rigorous task and hence very time-consuming
as the precision of the labels has a big impact on the targeted task. In Cityscape [14], the
semantic labels generation for each frame required 1.5 hours on average. however, there
are some efforts to generate these labels automatically and reduce the labeling burden.
Human supervision is still needed to validate or correct the proposed labels. For example,
in the aiMotive dataset [15], a method was used to search for possible candidates in a
sequence of data. the candidate’s labels are further enhanced with an object tracking
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algorithm, where they are optimized recursively.

Table 1: State-of-the-art datasets. Abbreviations scenarios: (U)urban, (SU)suburban,
(H)highway and (P)parking; conditions: (G)good, (N)night, (R)rain, (F)fog and (S)snow;
Sensors: (M)mono/(S)stereo (C)camera, (M)mechanical/(SS)solid-state (L)LiDAR
and (R)radar; synchronization (Sync.): (H)hardware and (S)software; calibration:
(M)manual, (TL)target-based and (TB)target-less; (-)no information available or not
available in the dataset.

Dataset Scenarios Conditions Sensors GPS/IMU Annotation Classes Sync. Calib.
U SU H P G N R F S C L R 2D 3D Sem.

KITTI [9] ✓ ✓ ✓ - ✓ - - - - 1 SC 1 ML - ✓ - ✓ ✓ 28 H/S TB
nuScene [2] ✓ - - - ✓ ✓ ✓ ✓ - 6 MC 1 ML 5 R ✓ - ✓ ✓ 23 S TB/TL
View of
Delft [10]

✓ - - - ✓ - - - - 1 SC 1 ML 1 R ✓ - ✓ - 13 - TB

Waymo
Open [16]

✓ - - - ✓ - ✓ - - 5 MC 5 ML - - ✓ ✓ ✓ 4 S -

A2D2 [13] ✓ ✓ ✓ - ✓ - ✓ - - 6 MC 5 ML - - - ✓ ✓ 38 - TB/TL
Cityscape
(and 3D)
[14]

✓ - - - ✓ - ✓ - - 1 MC - - - - ✓ ✓ 30 - -

Radiate [4] ✓ - ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1 SC 1 ML
1 R

(360◦)
✓ ✓ (✓) - 8 - TB

Pixset [8] ✓ ✓ - ✓ ✓ -
✓

(10%)
- - 3 MC

1 ML/
1 SSL

1 R ✓ - ✓ - 20 PTP TB

aiMotive
[15]

✓ - ✓ - ✓ -
✓

(4%)
- - 5 MC 1 ML 2 R

✓
(GNSS)

✓ ✓ - 14 - -

Rain Wcity
[5]

✓ - - - ✓ - 1 MC - - 1 MC - - - - - - - - -

EU Long-
term [6]

✓ ✓ - - ✓ - - - ✓
2 SC/
2 MC

3 ML/
1 SSL

1 R
✓

(GNSS)
- - - - H/S TB

Zenseact [3] ✓ ✓ ✓ -
✓

(80%)
✓

(19%)
✓

(16%)
✓

(2%)
✓

(2%)
1 MC 3 ML -

✓
(GNSS)

✓ ✓ ✓ 15 - -

3 Fulfilling the Requirements of Sensor Fusion

3.1 Sensors and Sensors Placement

(a) Prototyping vehicle (b) Sensor Placement Architecture

Figure 1: Perception System

Expleo Germany GmbH has been developing a prototyping vehicle and corresponding
functionalities for highly automated and autonomous driving functions like AVP and
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Autonomous Valet Driving System (AVDS) in the last few years. The newly enhanced
sensor setup integrated into Expleo’s vehicle collects data in real-world scenarios. It
consists of two sub-systems: the AD setup and the reference setup. The autonomous
driving (AD) setup includes a set of sensors that can potentially be integrated into a
production vehicle, and it’s composed of three solid-state LiDARs (SSL), Robosense M1,
two stereo cameras (SC), four short-range radars (SRR), and two long-range radars (LRR).
Those sensors have been integrated into the vehicle chassis as shown in Figure 1b. The
reference sensor setup consists of three mechanical LiDARs (one Velodyne VLP-32 and
two Robosense BlackPearls(BP)) positioned atop the vehicle to model the prototyping
vehicle’s entire surroundings, as depicted in Figure 1a.

3.2 Sensor Calibration

For our prototype vehicle sensor setup, manual calibration can prove challenging due to
some sensors being embedded in the vehicle chassis, making their centers invisible. To
overcome this, we have explored the possibility of estimating the transformation between
sensors using the data they generate. In this study, our focus is on target-based multi-
sensor calibration. It is a challenging task to extract environmental features with radars
that are comparable to LiDARs or cameras as well as obtaining an accurate trajectory
with radars. In [17], a multi-sensor calibrator (MSCT) was proposed to calibrate sensors
similar to our setup, including LiDAR, camera, and radar. The Target comprises of four
rings in the center of a rectangular board alongside a radar reflector positioned in the
middle behind the board. The 3D positions of the four rings’ centers are estimated as
a pattern from the LiDAR and camera data in addition to the corner reflector from the
radar data. The optimization method is further refined by incorporating a loop closure
constraint between the sensors.

However, we discovered while testing this calibration procedure on our sensor setup,
the patterns were not detectable by the BP LiDAR. This is because the implemented
detection procedure is based on the horizontal line scans that reflect the rings on the board.
Consequently, we chose an alternative solution that is not dependent on the LiDAR’s point
cloud structure. We replaced the rings board (RB) with a chessboard (CB), which is a
widely used target for camera-2-LiDAR calibration [18]. For the detection of chessboard
edges using cameras, we implemented the commonly-used pattern detection method [19].
To detect chessboard edges with LiDAR, we first estimated the point clouds that belong
to the chessboard using the RANSAC algorithm. We then used the convex hull algorithm
to extract the border of the chessboard, and based on that, used a minimum rectangle
fitting algorithm to extract the edges of the chessboard.

For comparing and validating the various calibration solutions tested, we constructed a
test bench as illustrated in Figure 2. To accurately estimate the sensor center, we designed
customized mountings to digitally measure the distance between the sensor center and a
reference point on the mountings. We manually measured the distances between these
designated reference points for each sensor to calculate the transformation matrix between
the sensors.
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Figure 2: Test bench for testing different sensor calibration tools

Table 2: Results of multiple calibration tools on different sensor-to-sensor constellations

Sensor-to-Sensor Calibration tool Rotation Error (deg) Translation error (cm)

VLP-32 to
camera

MSCT Tool with CB [ 0.83 0.52 0.74] [2.08 1.31 3.94]
MSCT Tool with RB [0.3 0.72 1.33] [2.09 1.38 3.9]

Matlab tool [0.15 0.21 2.1] [2.02 3.17 0.19]

VLP-32 to BP MSCT Tool [1.51 0.25 1.164] [2.62 0.67 1.39]

M1 to LRR MSCT Tool [0.074 1.49 1.41] [1.3 3.08 5.39]

Table 2 displays the outcomes of our calibration method for various sensor-to-sensor
configurations examined on the constructed test bench. We also evaluated the VLP-32-
to-camera calibration with alternate methodologies like the MSCT Tool with RB, and
the Lidar and Camera Calibration tool from Matlab. We observed similar results for this
sensor constellation. However, in general, the calibration results differ with an average 5.5
cm translational and 2-degree rotational error from manual calibration. This can have a
negative impact on the accuracy of sensor fusion applications. It is also worth mentioning
that the positioning of the sensors on the test bench differs from the prototyping vehicle
setup and can lead to diverse calibration results.

3.3 Time Synchronisation

As mentioned in section 2, time synchronization plays a crucial role in sensor fusion, par-
ticularly for autonomous driving applications. A time offset between different sensors can
lead to significant positional errors when observing the same object, especially in highly
dynamic conditions. As outlined in [20], the delay in message delivery can be divided into
three components: the delay from the sender (sensors), the delay from propagation, and
the delay from the receiver (data logger).

Conversely, the time delay from the receiver is non-deterministic due to potential
operating system overheads. When the data logger approaches its data processing capac-
ity limit, a conventional solution like that described in [21], which uses the data logger
to assign timestamps to different sensors, struggles to assign timestamps reliably. This
challenge prompted the development of our time synchronization framework, specifically
designed to address time delays in message delivery (see figure 3).

The propagation delay is deterministic and relies on the distance between the sender
and the receiver. In our use case, the delay from the sender (the sensors) is also deter-
ministic because it is implemented on a hardware level. On the other hand, the time
delay from the receiver is non-deterministic due to possible overheads from the operating
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Figure 3: Overview of the created time synchronization framework

system. When the data logger nears its data processing limit, a conventional solution like
the one described in [21], which uses the data logger to assign timestamps to different
sensors, struggles to assign timestamps reliably. To address this issue, we developed a
time synchronization framework (refer to figure 3) that is specifically tailored to handle
message delivery delays.

In our framework, mechanical LiDARs (e.g. VLP-32C and BP) use the GPS time
synchronization method [22, 23]. However, in underground parking garages, there is no
GPS signal. As a solution, we propose an approach that simulates GPS signals via our
data logger’s clock. We simulate the GPS signal for mechanical LiDARs by producing the
Pulse Per Second (PPS) and National Marine Electronics Association (NMEA) sentence,
following a previous study [24].

Precision Time Protocol (PTP) is used for time synchronization of solid-state LiDARs
(M1) and LRRs. PTP, introduced in 2002 as a method for synchronizing clocks in dis-
tributed systems (Eidson, 2002), is used in conjunction with the data logger as the master
clock and the solid-state LiDARs and long-range radar as the slave clock.

The SRRs exclusively support time synchronization over the Controller Area Net-
work (CAN). We adhere to the specifications outlined in the Automotive Open System
Architecture (AUTOSAR) [25] to implement this time synchronization protocol.

Table 3: Time Synchronization Framework comparison

Sensors Typical Solution STD(ms) Our STD(ms)

VLP-32C 0.15 0.02
BlackPearl 0.4 0.05

M1 0.1 0.03
SRR 4.4 1.2
LRR 3.6 0.6

We compare our framework with the typical solution, which assigns the arrival time
to the message when the message arrives at the data logger [21]. We use the standard
deviation of the sensor clock with the time of arrivals, which is an evaluation metric used
in [24], to evaluate our time synchronization protocol.

As shown in table 3, we collected 3000 messages and measured the stability of the
packet-to-packet period by calculating the standard deviation. Our framework shows more
stability because the operating system overheads will not affect the time synchronization
performance.
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4 Methodology

4.1 Longterm AVP Data Generation in Controlled Environment

Currently, available open datasets for AD’s perception module are reliant on data collected
in the real world where critical situations and adverse weather conditions are infrequent.
Additionally, research is confined to using sensor setups that may not satisfy the demands
of new sensor arrangements, and where the collected data needs precise annotations. In
most modern datasets, LiDAR sensors are frequently utilized as a reference owing to
their high accuracy. However, during adverse weather conditions like foggy weather,
LiDAR signal performance can be significantly compromised, which negatively impacts
the quality of the annotation process. To resolve these concerns, we present a methodology
for collecting and annotating data for vehicle ego localization as well as object detection
and prediction in an LAVP context, specifically in regard to pedestrian-related scenarios,
which is the most common Vulnerable Road User present in LAVP scenarios. Considering
the ISAFE indoor testing facility, it is feasible to generate various scenarios involving harsh
weather conditions, such as varying rain and fog intensities, as well as controlled lighting
conditions. In the available test area, one can simulate different real-world scenarios.
Parking situations are also taken into account for data collection. A brief outline of the
potential weather conditions that could be incorporated into the data is presented in
figure 4.

Figure 4: Scenario variety for pedestrian detection at ISAFE.

Each condition presents distinct challenges for various sensors. For example, cameras
face visibility issues while the radar point cloud may have ghost objects when multiple
objects are in close proximity. With different combinations collected with different objects,
it is possible to either improve or develop new sensor fusion algorithms to achieve a robust
performance under different conditions. Additionally, it can serve as a complementary
source to the existing state-of-the-art datasets.

4.2 Reference Systems

Reference systems are essential in order to evaluate the accuracy of the developed per-
ception functions such as Object Detection and Classification or Vehicle ego-localization.
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4.2.1 LiDAR-based Reference Localization System

For testing in GPS-deprived environments, utilizing localization systems that are inte-
grated into the infrastructure yields an accurate solution, such as the IPS system (dis-
cussed in section 4.2.2) or MOCAP systems. Nevertheless, conducting real-world testing
in various locations incurs significant overhead for integrating and calibrating these sys-
tems into the infrastructure. In our use case, we chose to implement a LiDAR-based
localization system, as it provides an accurate and robust solution.

We examined various benchmarks for LiDAR-based localization and selected two so-
lutions: HDL-Graph-SLAM [26] and LEGO LOAM [27]

HDL-Graph-SLAM generates and optimizes a graph where nodes indicate the sen-
sor positions, and the edges between these nodes represent the odometry constraints (the
relative pose between nodes), generated in this case by a point cloud scan matching al-
gorithm, such as GICP [28]. The graph is optimized so that the error function between
constraints and positions is minimized. With the help of floor detection and loop-
closure, the graph is optimized and a more precise map of the environment is produced.
the LiDAR frames are afterwards reprocessed through a scan-matching algorithm, where
these LiDAR frames are registered with the generated map to estimate the final trajectory.

LEGO-LOAM is a LiDAR-based SLAM algorithm based on feature matching. This
algorithm discretizes the search space according to the LiDAR point cloud structure, to
extract 3D points that belong to edges and surfaces. It estimates the spatial transfor-
mation between two consecutive frames by finding correspondences between extracted
edges and surface features. In addition, a LiDAR mapping module is used to refine the
pose transformation. It matches the features extracted from the latest frame with all the
features extracted from the oldest frames stored in a map, which is further optimized by
a loop closure detection method.
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(a) Random trajectory (RT) (b) Right circle trajectory (RCT)

(c) Forward parking (FP) (d) Backward parking (BP)

Figure 5: Different tested parking scenarios trajectories

Table 4: LiDAR-based localization results on different trajectories

Method Evaluation Metrics (m) RT RCT FP BP

LEGO-
LOAM

RMSE 0.07 0.162 0.077 0.074
MAX Error 0.1433 0.249 0.149 0.115

HDL-GS
RMSE 0.058 0.144 0.086 0.094

MAX Error 0.169 0.252 0.159 0.191

Figure 5, represents an example of relevant trajectories that we used for testing our
Reference localization system, and the table 4 represents the results for these different
trajectories. We observe that while the root mean square error (RMSE) results for most
of the trajectories are below 10 cm, the maximal error reaches 0.24 cm. This presents a
challenge since a reference system should always maintain accuracy across all scenarios.
Thus, further improvement of this system is necessary.
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4.2.2 Data Annotation Methods

Annotating data is expensive and time-consuming, making evaluating and testing per-
ception systems a challenge. We propose an active learning-based labeling tool and an
indoor positioning system-based annotation approach to address this challenge.

Active Learning Based Semi-Auto Labeling Tool for Semantic Segmentation
At Expleo, we created a semi-automatic labeling tool for semantic segmentation that
employs active learning to reduce the manual effort of human annotation. Notably, we
have incorporated the One-vs-All (OVA) method into active learning and found that it
enhances diversity for active selection, leading to improved segmentation accuracy [29].
Using uncertainty, the Semi-Auto labeling tool suggests potential candidate points of
an image and asks the human annotators for the true label. The human annotation is
utilized to retrain the neural network. According to [29], this semi-automatic labeling tool
achieves 96% performance in fully supervised learning with 100 pixels per image (0.06%
of the entire dataset) on CityScapes [14]. We incorporate this semi-automatic labeling
tool in our reference system pipeline to facilitate the prompt and efficient generation of
image segmentation labels by human annotators.

IPS Reference Based Annotation For the annotation process, we use the IPS that
allows for accurate labeling regardless of weather conditions. Equipped with a receiver
antenna, the positioning system can provide precise information, including coordinates,
velocity, and heading angle of the object of interest. To effectively develop and test detec-
tion methods, reliable ground truth data is crucial, a necessity fulfilled by this positioning
system. This system offers significant advantages in the domain of pedestrian and vehicle
detection tasks that are based on vision-based sensors like camera, LiDAR, and radar
sensors. A notable benefit is its ability to maintain accuracy even in inclement weather
conditions, such as rain and fog, where other sensors may produce unreliable or incom-
plete data. Furthermore, it can generate both 3D and 2D bounding boxes for training
object detection models using images and point clouds. See Figure 6 for an illustration
of the data collection setup and annotation process.

Figure 6: Overview of the annotation framework at ISAFE.

To conduct the annotation process, first, create a 3D bounding box that encloses the
entire body of the pedestrian across all data frames in a specific experiment. This can
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be accomplished using IPS measurements for each coordinate (X, Y, and Z in meters).
The reference point of the Z-axis remains at ground level. Using this data, the height
(corresponding to the Z dimension of the 3D bounding box) is calculated. Subsequently,
predetermined values for the X and Y dimensions are applied. In a second step, the
corners of the 3D bounding box project onto the target image (2D space) employing
the camera parameters and calibration values obtained from Chapter 3.3. The minimum
and maximum values within the image boundaries establish the final 2D bounding box,
as illustrated in figure 6. This method can be used regardless of weather conditions.
However, as depicted in figure 6, the resulting bounding box (indicated in red), may be
larger than the actual size of the object depending on the viewpoint and perspective.
Furthermore, this technique can produce complete body bounding boxes even when the
pedestrian is partially or entirely obstructed.

Complementarity of Annotation Methods Considering our context, the presented
methods can complement each other to offer a more time-efficient approach to data gener-
ation. In real-world scenarios where no positioning system is available, the active learning-
based method could prove useful for annotation generation. In contrast, in edge cases with
harsh weather, the labeling method aided by the IPS presents a viable option. Hence,
both methods offer a viable approach to gather supplementary scenarios, both real and in
a controlled setting, to create a comprehensive dataset encompassing all possible test cases
with variations in weather and scenarios to facilitate complete training and assessment of
algorithms.

5 Conclusion

The evaluation of various pre-existing datasets for the development of a long-range au-
tomated vehicle revealed open issues in their application due to several factors, includ-
ing localization in an indoor environment and the acquisition and annotation of adverse
weather conditions. We propose a method of generating complementary data, taking ad-
vantage of the closed indoor environment found at ISAFE, and emphasize the benefits of
an IPS reference-based annotation process. Table 5 shows our method and its possible
features in regard to state-of-the-art datasets mentioned in chapter 2. The presented
sensor setup is composed of a relatively diverse set of sensors in comparison with state-
of-the-art datasets. For multi-sensor calibration, we implemented a solution adequate for
our sensor setup. Through a test bench, we showed that the reached accuracy is still not
enough in comparison with manual calibration and this can impact using sensor fusion
for different use cases. For time synchronization, we showed that our framework provides
more stability. Furthermore, we presented our reference systems. In future works, we
will further investigate multi-LiDAR-based localization to enhance the accuracy of our
reference localization system. This will give us more insight into the needed accuracy
for sensor calibration. For the latter, we plan to investigate target-less sensor calibration
methods.
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Table 5: State-of-the-art datasets. Abbreviations scenarios: (U)urban, (SU)suburban,
(H)highway and (P)parking; conditions: (G)good, (N)night, (R)rain, (F)fog and (S)snow;
sensors: (M)mono/(S)stereo (C)camera, (M)mechanical/(SS)solid-state (L)LiDAR
and (R)radar; synchronization (Sync.): (H)hardware and (S)software; calibration:
(M)manual, (TL)target-based and (TB)target-less; (-)no information available or not
available in the dataset.

Dataset Scenarios Conditions Sensors GPS/IMU Annotation Classes Sync. Calib.
U SU H P G N R F S C L R 2D 3D Sem.

KITTI [9] ✓ ✓ ✓ - ✓ - - - - ✓ ✓ - ✓ - ✓ ✓ 28 H/S TB
nuScene [2] ✓ - - - ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - ✓ ✓ 23 H/S TB/TL
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .

Our
Method

scenario selectable in regard to
possibilities of a testing area

✓ ✓ ✓ ✓ - 2 SC
3 ML/
3 SSL

6 R IPS
IPS for moving
objects 2D & 3D

S TB
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