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General Panoptics: Combining Semantic
Segmentation and Classical Methods for a Fast

LiDAR Panoptic Segmentation

Lukas Beer and Hans-Joachim Wünsche�

Abstract: Detailed knowledge about the environment is a prerequisite for autonomous driv-
ing. One main question in this context is: Which objects are around me? The answer to this
question contains two main parts: getting semantic and advanced geometric information. Thus,
we need classified, individual instances with a unique ID, together with further information of
the surrounding, such as a classification of the ground. This combination is generally known as
panoptic segmentation. In this paper, we present a novel general approach for this task. Instead
of focusing on an end-to-end network or a combination of object detection and semantic segmen-
tation, our method combines semantic segmentation with a non-learning-based clustering. Both
information sources are combined using a Neighborhood-Related Activation Function (NeRAF).
This allows a general panoptic segmentation of everything in the surrounding - no matter of its
class. We show that the proposed method can run with up to 45 fps on a mobile computer.
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1 Introduction

Since [1] recently introduced the task of panoptic segmentation (PS), it got more and
more into focus of current research. Originally defined for images, PS combines semantic
segmentation (assign a class to each pixel) and instance segmentation (detect and seg-
ment each instance). PS splits classes in two categories: countable objects (things) and
amorphous regions (stuff ). Not only limited to images, this task is also a hot topic with
3D point clouds. As a result, we receive individual, classified LiDAR instances.

These instances have several applications: besides the awareness of other traffic par-
ticipants for motion planning, many of the current localization and SLAM algorithm
need semantic landmarks for a precise positioning [2–4]. Nevertheless, most of the thing
classes are considered to be traffic participants in recent works. Static objects such as
trees, bushes, buildings and poles are ignored [5; 6] or only non-natural static objects
(buildings, poles, signs) are seen as things [7]. To the best of our knowledge, static but
natural objects, such as trunks, are not present in so far published LiDAR PS datasets.

In this work, we want to tackle this issue. Contrary to many other approaches [5; 6; 8–
11], our method does not fully rely on deep learning. Instead, we combine the non-learning
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(a) Instance output, each instance has a dif-
ferent color.

(b) Semantic output, each class has a dif-
ferent color.

Figure 1: Result of our approach: LiDAR scan from the KITTI dataset with semantic
information (1a) and instance information (1b). A video of our approach can be seen on
https://www.mucar3.de/fas2022-general-panoptics.

based clustering approach from [12] with the semantic segmentation network from [13].
Therefore, we do only need training data for the semantic segmentation.

Both parts are combined using a novel Neighborhood-Related Activation Function
(NeRAF) in combination with a consensus-driven fusion as proposed in [8]. The activa-
tion function takes instance ID changes, label changes and the depth difference of two
neighboring points into account and decides whether they belong to the same semanti-
cally or geometrically consistent object or not. In combination with a look-up table for
defining the relations, we can simply tune the weights of each component in the activation
function, depending on the classes of two neighboring points. With the help of NeRAF,
we receive separated instances. For classifying them, we perform the consensus-driven fu-
sion. The output of our approach can be seen in Fig. 1. Even geometrically close objects
like fences and bushes can be split robustly.

Due to the high efficiency of all three parts (clustering, semantic segmentation and
fusion) our approach runs with up to 45 fps on a consumer graphics card (NVIDIA GeForce
GTX 1060).

Compared to previous approaches, the main advantages of this method are the general-
ized PS, which does not need dedicated PS training data together with the high efficiency
while retaining adequate accuracy.

After we introduced PS in Section 1, we start in Section 2 with a short summary of
related work in the field of PS. In Section 3 we explain our approach in detail. A quanti-
tative and a qualitative evaluation in Section 4 is followed by a conclusion in Section 5.

2 Related Work

One of the first main contributions to LiDAR PS was [5]: the authors present a dataset for
PS in addition to two baseline methods. Each of their approaches uses a state-of-the-art
semantic segmentation (KPConv [14] and RangeNet++ [15]) in combination with a state-
of-the-art object detector (PointPillar [16]). Having one detection and one segmentation
part, they fuse both information afterward. All points inside one bounding box of the
object detector are seen as one instance. Using oriented bounding boxes minimizes the
error of misclassifying nearby objects. For detecting things, they need one object-detector
per class.
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The Dynamic Shifting Network (DS-Net) [8] combines semantic segmentation with
a learning-based clustering. Grid-level features are extracted with the help of cylinder
convolutions. Based on those features, two branches perform different tasks: the semantic
branch connects Multi-Layer Perceptrons to the cylinder convolution to perform semantic
segmentation, while the instance branch uses center regressions for preparing the things’
points for further clustering. A so-called dynamic shifting (DS) shifts the regressed center
to the correct cluster center. In the end, a consensus-driven fusion is applied to merge
instances with the semantic segmentation. This consensus-driven fusion is a majority
voting – for each predicted instance, the most appeared semantic label of its points is
used for the whole instance.

In contrast to proposal-based approaches, the Panoptic-PolarNet of [11] is based on a
single network. This deep network consists of four main components: a so-called Polar
BEV encoder that encodes the raw point cloud into a 2D representation, a shared encoder-
decoder network, two heads for semantic and instance segmentation and finally a fusion
step.

One of the fastest PS algorithms is Panoster [9]. The authors use an end-to-end
network that consists of a shared encoder and two decoupled, symmetric decoders - one
for the instance segmentation and one for the semantic segmentation. They fuse the
semantic and the instance information using a mask. Their approach is highly efficient
and can run with 58 fps.

3 Proposed Approach

intensity
z

y

x
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Semantic
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Clustering

NeRAF Consensus-Driven
Fusion

Figure 2: Overview of our approach. With an image-projection as input, a clustering and
a semantic segmentation are performed. Afterwards, the activation function generates
object instances which are classified by the consensus-driven fusion.

Assuming already preprocessed data, the current approach basically consists of three
parts:

1. Semantic Segmentation

2. Clustering

3. Label Fusion

The label fusion itself consists again of two parts: generating instances with the
NeRAF and classifying those instances using the consensus-driven fusion. The workflow
of our approach can be seen in Fig. 2.



122

14. Workshop Fahrerassistenz und automatisiertes Fahren

3.1 Preprocessing

Having a 3D point cloud as input, we need to preprocess the incoming data first. Thus,
all 3D points (x, y, z) with their euclidean norm d =

√
x2 + y2 + z2 are projected to a set

of 2D image coordinates (u, v):

(
u
v

)
=




W
[
1
2
[1− arctan(y, x)π−1]

]

H

[
1− (arcsin( z

d)+fovdown)
fovup+fovdown

]

 . (1)

H and W represent the height and the width of the resulting image. fovup and fovdown

represent the field of view of the sensor. We can see the resulting output as an image with
five channels: {d, x, y, z, intensity}. If two 3D points lie on the same image coordinate,
we choose the one with the smaller euclidean norm (range).

3.2 Semantic Segmentation

Generally, any semantic segmentation could be used for our approach. Nevertheless, we
focus on the capability of a high-speed PS. That is why we choose the more efficient
variant (”tiny”) of the 3D-MiniNet [13] as the segmentation part of our PS approach. We
do not perform the K-Nearest-Neighbors post-processing. Further, we keep the proposed
settings for training and data augmentation. For a detailed description of the 3D-MiniNet,
we refer to [13].

3.3 Clustering

Due to the focus on efficiency, we choose the clustering algorithm from [12]. This ap-
proach takes a range image as input and computes instances based on an angle criterion.
Therefore, we can use the same range image as in our semantic segmentation part to
compute separated instances. We do not need to perform any other preprocessing, due
to the shared image projection. Contrary to object detection algorithms which are based
on deep learning and run on the GPU, this algorithm runs efficiently on the CPU. While
the GPU is busy performing the semantic segmentation, the clusters can be calculated on
the CPU. For further information about the clustering, we refer to [12].

3.4 Label Fusion

The core of our approach is the NeRAF. Neither the semantic segmentation nor the
clustering result in 3D points yet. So far, the outcome of each part is a matrix which
contains class IDs and instance IDs. These two matrices share the same image projection,
and thus also the underlying 3D points. We combine these matrices using the NeRAF: In
combination with a breadth-first-search (BFS), such as it is used in the labeling part of
[12], we iterate through the matrices and compare the range, the class and the instance
ID of two pixels. Further, we ignore ground points – we fully trust on the semantic
segmentation for classifying ground. We start with a new instance, and NeRAF decides if
two neighboring pixels belong to the same instance. Having two neighboring pixels px, px+1

with the classes cx, cx+1, the instance IDs ix, ix+1 and the ranges dx, dx+1, we define the
varying of the class as vc, the varying of the instance IDs as vi and the difference between
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two depths as δd. For improving the robustness, we do not compare the direct classes cx
and cx+1. Instead we compare the predicted class of the current instance ci with cx+1. We
define NeRAF as

NeRAF(px, px+1) =
wcvc + wivi + wδ(1− min(|δd|,δdmax)

δdmax
)

wc + wi + wδ

(2)

with wc, wi, wδ as the three weights for vc, vi and δd. vc and vi have two possible states:
0 if there is a class / instance ID change and 1 if they are equal.

NeRAF results in a value between 0 and 1. We set the decision boundary to 0.5. If
the output is greater than that, we add pixel px+1 to the instance. As it can be seen
in Eq. (2), we use weights to control each component of NeRAF. Therefore, we can add
common a-priori knowledge about possible neighborhood relations. We define three set
of weights (wc, wi, wδ):
Set 1. The main focus lies on vi and δd.
Set 2. This is the counterpart to set 1: vc is dominant.
Set 3. Here, we set equal weights. Due to the close relation between δd and vi, we
decrease wδ.

Now, those three sets can handle several different scenarios, depending on the prior
knowledge. The scenarios are:

1. very close, but different classes,

2. same class,

3. normal distance between objects.
As an example: It is common sense, that vegetation and trunks are very close or even
overlapping, and thus would fall into scenario 1. Contrary to the pure clustering, the
semantic segmentation can handle the separation of those two classes. That would be
an ideal use case for set 2. Having two neighboring pixel with the same class, we focus
vi and δd (set 1). Neighborhood relations of objects which should not be too close to
each other (e.g. vegetation and cars, buildings and trunks) will be handled in set 3. The
scenarios are stored in a look-up table. Each combination of classes receives one integer
value, which represents the corresponding scenario. Depending on the scenario, NeRAF
can switch between the three different weight sets.

Nevertheless, NeRAF just helps to decide if two neighboring points belong to the same
object. The class of those instances is still ambiguous: Each point of each instance can
have a different class. As proposed in [8], we use a consensus-driven fusion module. This
simple fusion strategy is a majority vote: the whole new instance gets that class ID, which
occurs most. As a result, we receive a set of pixels of the projected objects which are
either geometrically and / or semantically separated.

3.5 Backprojection

The backprojection from images to point clouds is kept simple. For each point in the 3D
point cloud, we get the information on which pixel the point should be projected. Due to
the discretization, two or more points might share one pixel. In Section 3.1, we projected
only the closest points. Thus, for receiving the class and instance information per point,
we add a distance threshold. If the range differs more than 30 cm between the current
point and the depth on its position on the range image, the class and the instance ID of
this point remain undefined.
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4 Experiments

We evaluate our approach using different settings to observe the dependencies between
our PS and the semantic input:

� 512i: Projection size: 64× 512 px.

� 2048: Projection size: 64× 2048 px.

� 2048f : Projection size: 64× 2048 px, ”full” 3D-MiniNet.

Note that 2048f refers to the non-tiny version of the 3D-MiniNet.
For each setting, we train a network for 500 epochs on the KITTI data for semantic

segmentation [17; 18]. As proposed in [17], sequences 00-10 were used for training, except
sequence 08 which is used as validation set. For testing and evaluating, a notebook was
used with an NVIDIA GTX 1060 as GPU and an i7-8750H CPU with 2.20GHz. The
clustering and the semantic segmentation run in parallel, everything else runs on a single
core. We implement our approach in C++ inside the Robot Operating System (ROS)
framework [19] and use the TensorRT [20] library to speed up the inference.

4.1 Evaluation Metric

As proposed in [1], we evaluate our approach using the Panoptic Quality (PQ), the Seg-
mentation Qualitiy (SQ) and the Recognition Quality (RQ) which are calculated across
all classes. The scores are between 0 and 100%, whereby 100% denotes a perfect PS.
We further evaluate those three metrics separately on things PQth, SQth, RQth and stuff
PQst, SQst, RQst. Moreover, PQ† defines the PQ metric, while swapping the PQ of stuff
classes with its IoU. Even though our approach itself does not distinguish between stuff
and things by its class, we keep the stuff /things setting from [5] due to the lack of static
or natural things in the evaluation data. Setting the estimated instance ID of those classes
would cause a misleading result. Therefore, we follow [5] and set the instance ID of the
stuff classes (for the evaluation) to zero.

4.2 Quantitative Results

4.2.1 Panoptic Quality

We evaluate our approach using the SemanticKITTI Benchmark for PS. We compare our
results to the results of the two baseline methods in [17], LPSAD [10], the Multi-Object
Panoptic Tracking of [21], Panoster [9], the Panoptic-PolarNet [11] and the DS-Net [8].
The results can be found in Table 1.

Generally, our approach receives a PQ score between 24.5 and 39.5%, depending on
the network. Therefore, our method reaches similar results to [10] and [15] in combination
with [16]. Nevertheless, the accuracy of our approach lies under most of the state-of-the-
art methods. One main reason is the trade-off between performance and quality: The
better the overall performance of the semantic segmentation (e.g. 2048f), the better the
result of the PS. Nevertheless, this also leads to an extended computation time. Moreover,
our approach is the only general approach: while others do need the strict definition of
stuff and things and dedicated training data for the instance segmentation, our algorithm
results in PS of each object – no matter of its class.
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Table 1: Comparison of LiDAR panoptic segmentation performance on the Se-
manticKITTI test set. All scores are in [%]. Note different GPUs:
†NVIDIA RTX 2080ti, ∗NVIDIA Quadro P6000, +NVIDIA GTX 1060, �NVIDIA GTX
1080, ounknown

Method PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU t [ms]
R.N. [15] + P.P [16]† 37.1 45.9 75.9 47.0 20.2 75.2 25.2 49.3 76.5 62.8 52.4 409
KPC [14] + P.P. [16]† 44.5 52.5 80.0 54.4 32.7 81.5 38.7 53.1 79.0 65.9 58.8 514
LPSAD [10]∗ 38.0 47.0 76.5 48.2 25.6 76.8 31.8 47.1 76.2 60.1 50.9 85
Panoster [9]� 52.7 59.9 80.7 64.1 49.4 83.3 58.5 55.1 78.8 68.2 59.9 17
Panoptic-PolarNet [11]+ 54.1 60.7 65.0 81.4 53.3 60.6 87.2 54.8 68.1 77.2 59.5 257
DS-Net [8]o 57.7 63.4 68.0 77.6 61.8 68.8 78.2 54.8 67.3 77.1 63.5 537
ours (512)+ 27.0 36.9 72.0 36.5 15.9 74.3 20.9 35.0 70.3 47.8 40.8 22
ours (2048)+ 34.3 42.8 74.1 45.4 23.4 76.7 29.8 42.2 75.1 56.7 45.1 102
ours (2048f)+ 39.6 47.6 74.8 52.0 30.9 78.4 38.5 45.9 72.1 61.8 51.1 175
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Figure 3: Runtime of several approaches. As already in Table 1, note the different GPUs.
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4.2.2 Runtime Analysis

The runtime of the different approaches can be seen in Table 1. In our calculation,
we exclude the spherical projection and the backprojection: Everything else, including
further preprocessing, copying, and moving data, is included.

Generally, our approach reaches a mean runtime of 22 to 175ms, depending on the
setting. As one would expect, a four times smaller input (64× 512 vs. 64× 2048) results
in a roughly four times lower computation time. Comparing our approach with others is
rather difficult due to different hardware or non-public code. Nevertheless, in Fig. 3 we
can see the runtime and PQ of several methods and their hardware used. Even though
a low-level consumer graphics card was used, we can clearly see that our approach is up
to 26 times faster than other approaches. Nevertheless, we can not reach the 17ms from
[9], conducted on an NVIDIA GTX 1080. Comparing the full point cloud (64 × 2048),
the approach from [10] beats our runtime, too. According to the authors, they used an
NVIDIA Quadro P6000.
Even though we use a highly efficient network, the segmentation still has the highest
impact on the computation time: With a full range-image (64 × 2048), the fusion step
takes 15ms. Copying the data in combination with further preprocessing takes 40ms.
The clustering does not impact the computation time because it is always faster than the
semantic segmentation. 42 to 69% of the computation time is used for the inference.
In summary, even with a low-level graphics card, our approach runs faster than most of
the other approaches, despite their superior hardware.

(a) Cluster input. Grey points denote
ground.

(b) Semantic input.

(c) Cluster output. Grey points denote
ground.

(d) Semantic output.

Figure 4: In- and outputs of our method. While Fig. 4a shows the cluster input and
Fig. 4b shows the semantic input, Fig. 4c shows the resulting cluster and Fig. 4d shows
the resulting class.
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4.3 Qualitative Results

Even though other purely deep learning based methods perform well in their evaluation
sequences, our approach has one major advantage: through the combination of learning
and non-learning based methods, it takes the benefits of both worlds. Hence, the output
of our PS is generally stable in unknown areas and different sensors. Fig. 4 shows an
example using a Velodyne VLS-128 LiDAR. Further, we added extra noise to the point
cloud in order to enlarge the error. Even though neither the semantic segmentation nor
the clustering result in a good solution, the outcome of the combination becomes more
coherent.

5 Conclusion

In this work, we show a general approach for PS. Contrary to other methods, it is not
fully based on deep learning and combines semantic segmentation with clustering using
a neighborhood-related activation function (NeRAF). Hence, it generates classified in-
stances, no matter of its class. Depending on the incoming semantic segmentation, our
approach can reach the accuracy of current state-of-the-art. Moreover, every single part
of our approach is highly efficient. This makes the PS run with up to 45 fps on a consumer
graphics card. Future work should keep a focus on the combination of non-learning based
clustering and semantic segmentation for PS and evaluate different methods for fusing
both parts. Further, NeRAF should be evaluated further, using advanced networks and
different clustering methods.
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