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Trajectories as Markov-States for Long Term Traffic
Scene Prediction

Jörg Reichardt

Abstract: We propose the use of traffic participant trajectories with constant time horizon

as Markov states for tracking and trajectory prediction. We show how constant time length

trajectories can be tracked with minimal computational overhead over kinematic state tracking.

The same representation can be used to model future trajectories. In conjunction with multi-

object multi-hypotheses tracking architectures it allows for an efficient representation of multi-

modal distributions over the future of traffic scenes with heterogeneous participants.
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1 Introduction

Safe and comfortable navigation of an autonomous vehicle necessitates anticipatory plan-
ning, i.e. the ability to form expectations and make predictions about the future behavior
of dynamic agents in the environment.

The basis for such predictions is an accurate estimate of the present state of dynamic
agents based on past observations. Naturally, such state estimates are probabilistic due to
uncertainties in the measurement process or unobservable quantities such as agent intent.

State space models are uniquely suited for this task as they provide a solid probabilistic
framework to sequentially absorb observations into estimates of the agents’ current state
and track their motion over time.

The standard technique for this are Bayesian Filter architectures of which the Kalman
Filter is the prime example [1]. Under the assumption of Gaussian densities for states and
observations together with linear motion and observation models, it yields closed form pre-
diction and update equations that are both numerically efficient and stable. Commonly,
kinematic states of agents are tracked. Figure 1 illustrates that these are generally not
sufficient to predict the future evolution of a traffic scenario. Many contributions exist
that augment the kinematic state space with latent variables modeling agent intent that
need to be inferred from observations [2, 3]. Intent is not directly measurable and often
not signaled unequivocally and thus has to be inferred from past observations. However,
that is a challenging problem as it is not clear how to describe the space of driver inten-
tions. Should one use maneuver intentions that are mutually exclusive and collectively
exhaustive? Does that mean one cannot make a lane change while taking a turn? Also,
does this apply to all traffic participants? What are the maneuvers of a cyclist or a
pedestrian?
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Since all the obtainable information about a driver’s intent must be in its past behavior,
i.e. its past trajectory, it is tempting to simply maintain a list of past kinematic states
and infer driver intent on the fly based on this ”historic” data. Note that a list of past
states is not the same as a list of past observations - state tracking algorithms disentangle
the uncertain data associations that arise in multi-object tracking giving unique physical
objects unique tracking ids without which single object trajectories cannot be formed.

While promising, using such lists has the obvious drawback of being both memory and
compute intensive. This is particularly the case when tracking multiple objects with multi-
hypotheses tracking algorithms that potentially maintain hundreds of data association
hypotheses in order to be able to track effectively through clutter and occlusion [4, 5, 6].
Since each data association hypothesis effectively represents a different history, one would
have to maintain hundreds of lists of past kinematic states.

We seize upon the idea of taking the trajectory of an object as the basis for predicting
its future motion. However, instead of maintaining a list of kinematic states, we promote
an object’s past trajectory over a constant time horizon ∆t to its Markov state. We
assume ∆t ≫ δt, i.e. much larger than the cycle time δt at which new measurements
are obtained and the filter updates are executed. The compatibility of tracked past and
hypothesised future trajectory in the light of current evidence then plays the decisive role
in estimating the probability of future trajectories.

Figure 1: Top: Given only kinematic states, each vehicle has 2 plausible path options,
resulting in a total of 4 equally likely future scenarios for the traffic scene. Middle and
Bottom: With past trajectories given, the uncertainty about future scenarios may be
largely resolved.

Our contribution is outlined as follows: we introduce a parametric trajectory represen-
tation and corresponding linear motion and observation models for its parameters, which,
together with Gaussian densities over parameters, yield closed form Kalman update equa-
tions. We show that the parameters of this representation have a spatial interpretation.
We then employ this representation in predicting future trajectories and finally demon-
strate how this representation can be integrated into a multi-hypotheses tracking frame-



23

14. Workshop Fahrerassistenz und automatisiertes Fahren

work that permits the estimation of multi-modal mixture distributions over the futures
of entire traffic scenarios.

It is understood that all results presented are elementary and as such are not new.
However, we feel that the exposition unifies a number of existing ideas and possibly
provides a fresh perspective and novel synthesis that may still be of interest.

2 Trajectory Tracking

In contrast to paths, which are curves in space, trajectories are curves in space and time.
The proposed parameterization rests on separating these into a set of fixed basis functions
of time only, and a parameterization that has spatial semantics.

We choose a set of n+ 1 fixed basis functions ϕk(τ) : R → R to describe a trajectory
in each of d dimensions of space. We differentiate in τ ∈ R a re-scaled time variable that
denotes time along a tracked past trajectory with τ = 0 corresponding to t − ∆t and
τ = 1 corresponding to t. It is convenient to introduce Φ(τ) ∈ Rn+1 as the vector of basis
functions Φ(τ) = [ϕ0(τ), ϕ1(τ), ϕ2(τ), · · · , ϕn(τ)] evaluated at τ .

Next, we introduce our state vector xt ∈ R(n+1)d. We can generate any point ct(τ) ∈ Rd

on a trajectory from linear combinations of the basis functions ct(τ) = (ΦT(τ) ⊗ Id)xt

and thus identify our state variables as the coefficients of this linear combination. Here
Id is a d×d identity matrix and ⊗ denotes the Kronecker product that simply distributes
our basis functions across the d spatial dimensions. An agent’s current position at time t
will be ct(1) and an agent’s position at time t−∆t will be ct(0).

It is instructive to interpret the entries in our state vector xt as control points, i.e. as
having spatial semantics. Separated into individual coordinates and basis vectors ei of
the d dimensional space we have (dropping the index t for brevity):

c(τ) =
d∑

i=1

n∑
k=0

ϕk(τ)xkd+iei =
n∑

k=0

ϕk(τ)pk

Thus, a trajectory can also be interpreted as a weighted combination of (n + 1) control
points pk with weights that vary with time via the basis functions. The first d entries in
xt correspond to p0, the second d entries correspond to p1, etc. If we arrange the control
points as the rows of a matrix P ∈ R(n+1)×d we can write most succinctly:

c(τ) = ΦT(τ)P

We thus have a compact representation of a trajectory in terms of its control points.
We will make use of all notations introduced in our further discussion. We stress the
importance of having a parameterization that has spatial semantics: Trajectory prediction
and scenario prediction in particular are about the interaction of curves extending through
time and space with purely spatial features. Hence, a common footing can provide the
basis for effectively modelling the interactions of trajectories and the static environment.

We are free in our choice of basis functions and can even learn them from data. A
classical choice are monomials ϕk = τ k. Then, we are effectively using a Taylor expansion
of the trajectory in each spatial dimension. This provides provable limits on the approx-
imation error if we are able to establish limits on the higher derivatives. This is possible
for physical agents due to physical constraints. We can further express preference for
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comfortable trajectories by placing zero mean priors on the value of the coefficients corre-
sponding to jerk and higher derivatives [7, 8, 9]. We denote the vector of monomial basis
functions by ΦM(τ). Another classical choice is to use Bernstein Polynomials, effectively
using Bézier curves as trajectory/state representation [10, 11, 12, 13]. The corresponding
vector of Bernstein Polynomials is ΦT

B(τ) = ΦT
M(τ)M with M ∈ Z(n+1)×(n+1) defined as

[14]:

Mij =





n

j − 1


n− j + 1
i− j


(−1)((i+j) mod 2) if j ≤ i

0 otherwise
(1)

This choice renders the location of the control points especially intuitive with p0 and pn

always at the end points, p0−p1 and pn−pn−1 tangent to the trajectory at the endpoints
and the entire trajectory confined to the convex hull of the control points.

Figure 2 shows an example of such a trajectory representation with Bernstein Poly-
nomials as basis functions.

Due to fixed basis functions, we have a linear observation model for ct(τ) and its time
derivatives by construction. Our formalism allows to make observations of the trajectory
at any point in time. However, for tracking applications, we are most interested in the
observation model at τ = 1, the end of the trajectory at current time t. The natural
observable is of course ct(τ) and its derivatives with respect to time, i.e. velocities and
accelerations. Due to our re-scaling of time, we have dt = ∆tdτ :

dn

dtn
ct(τ) =

1

(∆t)n


dn

dτn
ΦT(τ)⊗ Id



  
Hn(τ)

xt (2)

This amounts to a constant observation matrix for every value of τ that can be easily
combined. For example, let us assume we are observing an object’s position x, y and
velocity vx, vy organized in an observation vector ot = [x, y, vx, vy], the corresponding
linear observation model H is then given by stacking the rows of H0 and H1 from above.
The corresponding observation noise R can then be used to reflect measurement noise.

Let us stress the benefits of linearity at this point. To determine the n + 1 linear
coefficients necessary for our state representation, only n + 1 linear measurements at
arbitrary times τ are necessary. For example, using n+1 = 6 polynomial basis functions,
obtaining position, velocity and acceleration at start and end point completely determines
the entire trajectory in between. This effectively corresponds to a two point Taylor
expansion of the trajectory to degree 2 which results in the same accuracy as a Taylor
expansion to degree 4 at a single point [15]. Together with the physically imposed limits
on the higher derivatives of the motion of massive objects, our formalism should allow
a highly accurate representation of physical trajectories over time horizons ∆t of a few
seconds. We will come back to this point when discussing trajectory prediction.

Ego motion compensation is equally trivial as the control points transform as points
fixed in space under sensor movement. Augmenting the state vector to homogeneous
coordinates renders ego motion compensation another linear transform. This enables
tracking of the dynamic environment directly from the perspective of the autonomous
vehicle, i.e. in ego-coordinates. In moving sensor applications, the ability of being able
to transform our state representation to any new coordinate systems is a key advantage
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Figure 2: Example of a trajectory representation with n = 3, d = 2. The solid line
corresponds to the mean trajectory and the dashed lines are samples from the density.
Parameters, i.e. control points, are indicated at the mean values and with 95% confidence
intervals. The red dashed ellipse encloses a 95% confidence region for the position of the
object at τ = 0.7.

over alternative state representations such as LSTM recurrent neural networks that are
often employed in trajectory prediction tasks.

The next component we need in a filtering architecture is the motion model. We will
consider two ways to derive a linear motion model. First, let us consider the case in which
we can find a linear derivative operator D for our vector of basis functions:

Φ̇T(τ) = ΦT(τ)D (3)

For the monomial basis functions, this derivative operator is

DM =




0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·

· · · . . .




We now observe the associativity in:

ċ(τ) = Φ̇T(τ)P = (ΦT(τ)D)P = ΦT(τ)(DP) = ΦT(τ)Ṗ (4)

which gives us a linear motion model for the control points Ṗ = DP and consequently
for our state vector:

d

dt
x =

1

∆t
(D⊗ Id)x (5)

for a given δt = ∆tδτ this can be integrated analytically as a matrix exponential to yield:
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Fδt = exp

(
δt

∆t
(D⊗ Id)

)

xt+δt = Fδtxt

(6)

We denote the derivative for Bernstein Polynomials can be obtained from DM via a
similarity transform: DB = M−1DMM.

The second way of generating a motion model is derived from a fit procedure: Assume
at time t, we had m ≤ n + 1 samples of a trajectory ct(τi) from different times τi, i ∈
{1, ..,m} between τ1 ≥ 0 and τm ≤ 1. We arrange these samples as the rows of an m× d
matrix Ct. We now form an m × (n + 1) matrix B so that row i of B corresponds to
Φ(τi). Then, we could estimate the control points, i.e. our state vector, as a Bayesian
least square fit to the samples of the trajectory:

Pt = (BTR−1B+Σ−1
P )−1BTR−1Ct (7)

Here ΣP is the covariance matrix of a possible zero mean Gaussian prior and R
the covariance of Gaussian observation noise. Note that a zero mean prior is a natural
assumption if one of our basis functions is constant as is the case for both ΦM and
correspondingly ΦB. Further, this prior is the natural expression for any inductive biases
one may wish to express for the motion model.

With this in mind, the way to propagate a trajectory forward in time by δt now is the
following: From the current state estimate, i.e. the control points Pt, we generate samples
along the mean of the trajectory at n+ 1 equal spaced τ ′i = δt/∆t+ i(1− δt/∆t)/n, 0 ≤
i ≤ n and then re-estimate the control points from these samples pretending they were
obtained at τi = τ ′i − δt/∆t. To do this, as before, we construct the (n + 1) × (n + 1)
matrices B and B′ from Φ(τi) and Φ(τ ′i), respectively. We then get transformed control
points from

Pt+δt = (BTB+Σ−1
P )−1BTB′Pt (8)

Since we are estimating the new control points from samples of the mean, we don’t
need to consider the observation covariance matrix R in this expression. Without a prior,
this formula reduces to

Pt+δt = B−1B′P (9)

and it should be noted that (9) is consistent with our earlier approach (6) if a linear
derivative operator exists:

B−1B′ = exp

(
δt

∆t
D

)
(10)

We thus have a linear motion model Fδt for the control points that only depends on
our choice of basis functions and correspondingly for the state vector xt we find

Fδt = ((BTB+Σ−1
P )−1BTB′)⊗ Id

xt+δt = Fδtxt

(11)
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Figure 3: Example of the action of the motion model with δt = 0.3∆t. Note how the
motion model without prior follows the trajectory exactly for all points in the past, while
the model with prior deviates slightly from the past estimation.

Figure 3 illustrates this on a cubic Bézier curve and exemplifies the differences of the
motion model with and without the use of a prior.

With this, we have a compact representation of object trajectories together with linear
observation and motion models that enables closed form updates under a Gaussian density
assumption. Thus, it can serve as a drop in replacement in any object tracker, both single
object or multi-object. Observations at the most recent time point τ = 1 are naturally
absorbed into the tracked trajectory via the observation matrix H(τ) and the linear
motion model Fδt propagates the trajectory forward in time.

3 Trajectory Prediction

So far, we only absorb actual observations and thus are limited to track past trajectories.
However, if the proposed representation is accurate for past trajectories, then it is equally
adequate for future trajectories. For future trajectories, we use the semantics of τ = 0
corresponding to t and τ = 1 corresponding to t+∆t.

As discussed, for n+1 basis functions, we only need n+1 linear measurements to fully
determine the trajectory over the entire duration of ∆t. With n + 1 = 6 and position,
velocity and acceleration given at the start τ = 0, we only need 3 more observations and
the natural choice is position, velocity and acceleration at the end τ = 1. We denote these
hypothetical measurements ”pseudo-observations” of at τ = 1 to differentiate them from
actual observations o used for tracking. This concept of pseudo-observations at a constant
time horizon is motivated by the rich literature on driver modeling [7] and preview control
of vehicles [16, 17].

For vehicles, the road topology gives us a finite number of path options in the form
of center-lines and we choose to restrict the position of our endpoints to lie on these
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path options [18, 19, 20]. We further choose to restrict velocities and accelerations at the
endpoints to be tangent to the path option. We thus only have to find the position along
the path option, the longitudinal velocity and acceleration. This choice deliberately rules
out the possibility for pseudo-observations on lane boundaries for example. For the time
horizons considered here, there will generally not be enough evidence to distinguish such a
hypothesis from either a completed lane change or a keep lane hypothesis. Note that this
does not rule out predicting an object’s position away from center-lines at intermediate
times between t and t + ∆t - it just rules this out for pseudo-observations at t + ∆t. If
an object indeed crosses a lane boundary at t+∆t, our measurements will certainly lend
support to the hypothesis of a lane change at some later point in time t′ ∈ (t, t + ∆t)
when we consider pseudo-observations at t′ +∆t.

Figure 4: The static and dynamic environment shape the long term path options for a
traffic participant. The distribution of vehicle states at t+∆t is generally multi-modal and
influenced not only by the static environment but also by other traffic participants. This
multi-modal structure of the long term options shapes the expected state distribution in
short time horizons t+ δt.

Figure 4 illustrates this concept for a single vehicle in two different environmental
contexts. In each environment, there are K = 3 path options for the vehicle. The pseudo-
observations along these path options are uncertain in position, velocity and acceleration.
However, since we can assume continuity of trajectories in position, velocity and acceler-
ation, the hypothesized object state at τ = 1 and the current vehicle state at τ = 0 fully
define a trajectory and we can propagate back the uncertainty of the pseudo-observation
from τ = 1 to τ = δt/∆t when we will receive the next actual observation of the vehicle
dynamics. Note that due to the multitude of path options, we obtain a mixture distribu-
tion for expected vehicle dynamics in a short time horizon. This means, conditioned on
the K pseudo-observation, we could consider K different motion models:

P k
t+δt|t =

∫
dxtP (xt+δt|xt,o

f
k)Pt|t (12)

The probability, which of the path options is likely taken, is then evaluated in light of
new evidence together with a prior probability P (of

k) of the path option (which may be
uniform):

P (of
k |ot+δt) =

P (of
k)

∫
dxt+δtP (ot+δt|xt+δt)P

k
t+δt|t∑

k′ P (of
k′)

∫
dxt+δtP (ot+δt|xt+δt)P k′

t+δt|t

(13)
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A sensible choice for the pseudo-observations is to select the furthest point in the path
together with velocity and acceleration that is reachable without violating comfort levels
[8, 21, 22]. We are free to choose the uncertainties at τ = 1. This approach is similar to
[18, 23] but instead of forward generating the hypotheses, we interpolate back from a single
step prediction. Another excellent choice is to employ a Gaussian Process conditioned
on the past trajectory and the path ahead to provide an estimate of both mean and
covariance of our pseudo-observations [24]. The covariances of the pseudo-observations
must be large enough as to cover the option space plausibly, but small enough as to be
discriminative in the near future.

Figure 5 illustrates this concept numerically in a toy example. A single vehicle ap-
proaches the crossing. The road topology provides three path options. We construct plau-
sible end states as pseudo-observations at t +∆t with ∆t = 5s for each of these options
together with associated uncertainties. From a common initial condition, we simulate
three actual vehicle trajectories along these path options. Note how these actual trajec-
tories deviate from the mean hypothesized trajectories due the holonomic constraints of
the vehicle and the cost function of the vehicle controller.
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hypothesis: turn right
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Figure 5: A vehicle approaches a crossing at time t = 0 with v0 = 10m/s, a0 = 0 with
three hypotheses of future motion: a right turn, going straight across and decelerating
possibly due a leading vehicle, and changing lanes and accelerating to overtake the leading
vehicle. We show 95% confidence ellipses for pseudo-observations at t+5s and the resulting
mean trajectory for each hypothesis. With individual markers, we denote three actual
trajectories obtained from simulating a vehicle along these path options for 5s.

We are now interested at what point along the vehicle trajectory, it is possible to
differentiate which of the options is actually chosen. Figure 6 illustrates this. If we only
compare the vehicle’s position to the expectation from each hypothesis, we reach high
confidence at around 1s into the scene, (Figure 6, top). If we additionally consider the
velocity, high confidence is reached at about 0.5s (Figure 6, middle). Also note how the
turn right maneuver is competing with the decelerating straight maneuver early into the
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scene as both maneuvers are decelerating and the simulated vehicle veers slightly to the
left to increase the turn radius before the right turn. The bottom of Figure 6 shows the
marginal covariances of the hypothesized trajectories at t = 1s into the scene together
with the actual measurement of the three simulated trajectories.
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Figure 6: Top: The posterior probability of each hypothesis from Figure 5 for each of
the actually driven trajectories when considering only position information. Middle:
When considering both position and velocity. Bottom: Distribution of the hypotheses
dynamical variables at t = 1s into the situation together with measured quantities from
driven trajectories. Colors and markers correspond to Figure 5.

In a live system running at sub second cycle times δt the difference between future
options may be too small to differentiate between them, in particular as current state
estimates and pseudo-observations are updated at this cycle time, too, and by construc-
tion, the end of a tracked trajectory is always 100% compatible with all future trajectories
resulting form pseudo-observations. Hence, the current vehicle state does not provide any
evidence about which of the future options an object is going to take. We can, however,
check the compatibility of the past trajectory with a future option at the current point in
time. For this, we form a transition trajectory from observations made at t−α∆t on the
past tracked trajectory and at t+(1−α)∆t on the hypothesised trajectory. Typical values
for α∆t are in the range of 0.5s identified in our preceding analysis. On this transition
trajectory, we find the expectation for the current kinematic object state at τ = α. The
higher the compatibility between past and future trajectory, the closer this expectation
will match the current kinematic vehicle state. This effectively corresponds to an ”ob-
servation likelihood” for future trajectories. This approach is similar in spirit to multiple
model filters [25], but here, the ”models” are constructed from pseudo-observations for
given path options.
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We can leverage this observation likelihood directly in the framework of a multi-
hypotheses tracking algorithm. Before the data association step, we augment each local
hypothesis (corresponding to a single tracked object) with its possible path-options and
pseudo-observations. The entries in the cost matrix during the data association step are
then calculated from the observation likelihood of the transition trajectories as described
above [5]. That is, we effectively employ (12) in the calculation of the observation likeli-
hood. The standard data association algorithm (Murty’s Algorithm [26, 27]) now produces
a ranking of the most likely assignments of object detections to local hypotheses under the
constraint that all object detections are assigned and each local hypothesis is assigned at
most one observation. Each of these assignments forms a new global hypothesis weighted
by its total likelihood and, thus, provides a multi-modal multi-object representation of
the scene. We alter this algorithm slightly by adding the additional group constraint that
in each global hypothesis, only one of the possible futures for a local hypothesis can be
present. This constraint can be fulfilled trivially for the most likely global hypothesis by
considering only the maximum entry in each group of future trajectories. As Murty’s algo-
rithm generates alternative assignments from this globally optimal solution, we only need
to adapt the exchange rules in order to reflect the additional constraints. The resulting
ranking of data associations represents a probability weighted multi-modal multi-object
representation of the current traffic scene and its future development. The ranking can
then be further pruned by applying additional constraints such as traffic rules. The prun-
ing of highly probable hypotheses that violate traffic rules can be taken as a consideration
of an imminent violation of traffic rules.

4 Conclusion

We have introduced a parametric representation for object trajectories as Markov states
for object tracking together with corresponding linear motion and observation models
that allow closed form Kalman filtering under a Gaussian density approximation. Albeit
we have illustrated and motivated these concepts primarily with vehicles, they are by no
means limited to represent vehicle trajectories. Rather, they apply to all physical traffic
participants that cannot change their state of motion arbitrarily fast. We have further
shown how this representation can be used in trajectory prediction tasks and how it can be
integrated into multi-object multi-hypothesis trackers to represent consistent probabilistic
multi-modal distributions over the future of entire traffic scenarios.
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