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Learning a Diverse and Cooperative Policy for
Predicting Roundabout Traffic Situations

Moritz Sackmann? Henrik Bey! Ulrich Hofmann! and Jérn Thielecke*

Abstract: Predicting other drivers’ trajectories is challenging. We address the issue by
introducing a method to derive a driving policy based on multi-agent reinforcement learning. For
this, we let multiple vehicles interact in a roundabout scenario and reward desirable behavior.
While typically, all vehicles follow the same policy, we foster diversity by assigning different
preferences, e.g., cautious or sporty driving, to each vehicle during the training stage. These
preferences are part of the policy network inputs as well as the reward function. This enables us
to learn one single policy that can express different driving styles.
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1 Introduction

Predicting other drivers’ trajectories by modeling their behavior is an important challenge
in automated driving. One prominent application is cooperative behavior planning, i.e.,
estimating the influence of the own plan on other vehicles [1, 2].

A driver behavior model is a function that maps the current local observation of a
driver to their next action. Repeated execution of the model coupled with a kinematic
model leads to the prediction of the driver’s trajectory. There are many possible ways
to obtain driver models: Manual specification [3], learning from observed driver behavior
[4-7], and reinforcement learning (RL) [8].

As the manual specification of driver behavior is a Sisyphean task, many recent works
focus on learning driver behavior from observations of real-world driving. While the idea of
directly learning to imitate driver behavior is appealing due to its conceptual simplicity, it
suffers from accumulating errors [4-7], which we investigated in [4]. Moreover, the learned
policy is inherently limited by the scope of the data used for training. It is unlikely to
learn appropriate reactions to situations that are not represented in the training data,
which for example leads to collisions of approximately 3% of all vehicles in the closed-loop
simulation [4].

To sidestep these issues, this work builds upon the idea of RL, where the behavior
model (policy) is learned by interacting with a simulated environment that can generate
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an arbitrary amount of training data to improve the policy. During the simulation, each
state transition is assigned a reward, and the goal of the procedure is to find a policy that
maximizes the sum of rewards.

Outline When applying RL to learning a driving policy, a range of interesting questions
arises: 1.) How can we derive a behavior model from a minimal set of assumptions, e.g.,
the goal to move forward and to avoid collisions? 2.) The interaction with other drivers
is one key feature of behavior models. How can we learn a cooperative behavior model
without any model of how other drivers behave and react to us? 3.) How can the behavior
model be adapted to represent different types of drivers, e.g., more and less cautious ones?

The foundations of multi-agent reinforcement learning (MARL), questions 1 and 2, are
discussed in section 2, while our approach to learning a diverse policy, question 3, is the
subject of section 3. Finally, the properties of the learned policy are presented in section 4.

The core contribution of our work is the introduction of a method to train one
single adjustable policy that can be used to represent different driving styles. Further
contributions are the introduction of a reward function that fosters cooperative behavior
as well as the application of the independent proximal policy optimization method [9] for
learning the policy.

2 Technical Background

Reinforcement Learning The field of RL is concerned with solving partially observable
Markov decision processes [10], which model sequential decision problems: one agent makes
an observation o € O and performs an action o € A. As a consequence of his action, his
state s € S transitions stochastically to the next state' s™ ~ T'(:|s, ), according to the
conditional transition density 7T'(-|s, «). Each transition is assigned a reward R : Sx A — R.
Each new state s™ € S stochastically leads to a new observation ot ~ O(:|s"), forming
the basis for the next decision of the agent.

In our case, each agent can select an action o = (a,d), composed of acceleration a
and steering angle 0. The state transitions are performed through the kinematic bicycle
model [11]. The observations are generated by a simulation model and describe the
local environment of that agent. This procedure is visualized in Fig. 1. We assign the
rewards through a manually defined function that rewards forward movement and penalizes
collisions and leaving the track. The reward function is described in section 3. This function
might also be learned from real data, for example proposed by [12], but this is beyond the
scope of this work.

The goal of RL is to find a possibly stochastic policy 7(+|0), i.e., which action to choose
at which observation, that maximizes the sum of discounted rewards g = Zf\;k R g,
starting from the initial state kK = 0. The reward in the i-th step r; € R is determined
by R. We denote g, as the return. The discount factor v € [0, 1], typically close to 1,
ensures a preference for policies that gather high rewards fast. Moreover, it supports the
convergence of g for large numbers of steps N.

"We follow the convention of [10] to use ~ as a sampling operator: s* ~ T'(-|s, @) indicates that s* is
a sample from a random variable that is distributed according to the conditional density T'(X = z|s, a).
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Figure 1: One step of the policy roll-out: The local observations of each vehicle are
generated from the traffic situation. Observations include information on relevant vehicles,
e.g., conflicting and preceding vehicles. The observation vector is the input to the policy
network. An action is sampled from the action distribution. The kinematic model
determines the next vehicle state. While this diagram visualizes the steps for vehicle #6,
the same procedure is simultaneously executed for each vehicle in the situation.

Proximal Policy Optimization (PPO) PPO [13] is a policy gradient algorithm to
solve RL problems. One central advantage of policy gradient methods compared to value-
based RL approaches is the ability to handle continuous high-dimensional observation and
action spaces [10]. For the sake of brevity, we introduce a simplified algorithm here and
refer to the literature [13, 14] for a comprehensive description. At its core, two neural
networks are responsible for learning the policy: The policy network my with parameters
0 predicts the mean and covariance (p,, X4) of an action distribution, in our case a 2D
Gaussian distribution with diagonal covariance matrix. The value network vy : O — R
with parameters ¢ predicts the expected value of an observation, i.e., the return g, when
executing the current policy starting in state s.

After randomly initializing the policy and the value network, the following steps are
executed repeatedly during one training epoch:

1. Collect multiple trajectories, i.e., policy roll-outs, by randomly sampling actions
from the current policy a ~ my(-|o) and interacting with the environment until
termination, e.g., a collision. Calculate the relative likelihood p = my(ao) of
the sampled actions. Calculate the return g, starting from each state. Store
each experience e, = (ok, a, pr, gr) without particular order in the current set of
experiences F = {ey,€,...}

2. Estimate the advantage Ay = g — vy(0x) of each experience in E and store it along
with the experience. The advantage is a positive real number if the return gy is
higher than estimated by v,; otherwise, it is negative.

3. Train the value network v, to predict returns g based on the current observation
by minimizing >3, ) .cx(vs(0) — 9)%/|E| using gradient descent with respect to the
value network parameters ¢.

4. Train the policy network to increase the probability of selecting actions with positive
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advantages A and decrease the probability of actions with negative advantages. To
do so, maximize >3, , . 4c.er(To(a]0)/p)A using gradient ascent with respect to 6.

The main principle of each training epoch can be explained as follows: Due to the
stochastic sampling in step 1, some trajectories receive higher rewards than expected.
Consequently, in step 2, the advantages of observations along these trajectories are positive,
and the corresponding actions are reinforced in step 4, i.e., their relative likelihood 7y(cr|0)
is increased by shifting the predicted mean action pu, towards the good actions «. Usually,
Y, also decreases, which again increases the likelihood of . Conversely, mg(c|o) is pushed
away from actions with negative advantages. Simultaneously, step 3 creates an updated
baseline estimate of the expected returns of observations required to determine the truly
advantageous actions in the next epoch. As the expected returns of an observation change
when the policy changes, the value network needs to be updated along with the policy.

In practice, numerous improvements increase the stability of PPO, mainly by restricting
the step length during the gradient ascent of the policy parameters, similar to a trust
region optimization [13], and by reducing the variance of the advantage estimate [14].

Homogenous Multi-Agent Reinforcement Learning Until now, we have been
focusing on a single agent learning to drive through a roundabout. Clearly, the interaction
with other vehicles plays a central role in driver behavior models. This leads to three
requirements: First, other vehicles must be part of the simulated world, i.e., being
represented in the state vector s. Secondly, the observation model must give hints on
relevant other vehicles. And thirdly, we need a model of how other vehicles behave to
simulate the interaction with them.

Back to square one: After all, the goal was to learn a behavior model, but the learning
already requires a behavior model. This paradoxical situation is resolved by multi-agent
reinforcement learning (MARL): In a traffic situation, MARL treats each vehicle as an
agent that interacts with the environment, which includes all other agents, to maximize
its own reward. Recent work [9] introduces the independent PPO (IPPO) method, which
decomposes the n-agent MARL problem into n single-agent RL problems that can be
solved with PPO.

As we consider a situation consisting exclusively of cars, we previously trained a single
policy used by all agents [8]. Thus, each agent executes the same policy, and the policy and
value network are updated based on the collective experiences of all agents. This leads to
homogenous behavior among agents, e.g., similar velocities in the roundabout and similar
bumper-to-bumper distances in the queue before the entrance to the roundabout. In the
following sections, we propose and evaluate a concept to foster heterogeneous behavior
among agents to better reflect the diverse nature of human behavior in traffic.

3 Learning a Diverse Policy

We aim to find a safe and cooperative behavior model that can be applied independently by
all agents in a roundabout traffic situation. Compared to previous works, we foster diverse
behavior among agents by assigning different preferences p; = (Atwin,i; dmin,is Wace lat,i) t0
each agent. The preferences are reflected in the reward function: At the start of the
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Table 1: Components of the observation vector o

Feature Symbol Unit
Velocity v m/s
Distance to left and right boundary dy, d, m
Heading relative to lane in {0,5, 10,20}m 0...20 rad.
Road curvature in {0,5, 10, 20}m Co..20 m~!
Preceding vehicle’s velocity Upre m/s
Distance to preceding vehicle dyre m
Distance to next yield line dyiea m
Conflicting vehicle’s velocity Veonfl.1 m/s
Distance of conflicting vehicle to conflict zone deonfl.1 m
ond conflicting vehicle’s velocity Ueonfl.2 m/s
Distance of 2" conflicting vehicle to conflict zone  deona2 m
Distance to next priority merge zone Aierge m
Non-priority vehicle’s velocity Unonpr m/s
Distance of non-priority vehicle to merge zone Ayonpr m
Preference: Minimum time gap Al pin s
Preference: Minimum safety distance Anin m
Preference: Lateral acceleration weight Wacc,lat

simulation, we assign a random minimum time gap Aty,; € (0.5,1.8)s, a minimum
safety distance to the preceding vehicle dpin; € (1,5)m and a lateral acceleration weight
Wacelat,i € (0.3,1.5) to each agent. These values are also part of the observation vector and
consequently can influence the actions selected by the policy.

To learn such a diverse policy, we formulate a MARL problem that we solve using the
IPPO approach: The world state s contains the road layout, the kinematic states of all
agents, and their planned route, e.g., entering through the first entry and leaving at the
third exit.

The observation model O(+|s, ) determines the observation o; of the i-th agent. Similar
to [3, 4, 7, 8], an observation o; is a vector of manually selected descriptive features
of the current local environment of the i-th agent. In our case, it includes 24 features
that describe the agent’s state and relation to the road, relevant other vehicles, and the
preferences p;. An extensive list of features is given in Tab. 1. Notably, the observation
vector includes information on relevant other vehicles, also indicated in the observation
step of Fig. 1: The preceding vehicle, the closest two vehicles with priority (Conflicting
vehicles) when approaching the roundabout, and the closest non-priority vehicle driving
towards the roundabout, when being in the roundabout. The relation to these vehicles
is described by their velocities and distances. If a vehicle is not available, these values
assume reasonable defaults, i.e., large distances and average velocities. Apart from this
representation in the feature vector, communication between agents or policies is neither
possible nor needed.

The policy selects an action by mapping the observation to a distribution over the
action space. We restrict the feasible actions to physically plausible limits, i.e., steering
angle 6 € (—7/8,m/8)rad and acceleration a € (—7,3) m/s?>. The next vehicle state is
determined according to the kinematic bicycle model [11].
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Reward Function At each step, a reward is assigned to the i-th vehicle by the reward
function

T(S, «, Z) :(wvclrvcl 4 WerashTcrash T WofftrTofftr 1 Wace,lonTace,lon

+ Wace,lat,iT"acc,lat + wtgrtg + Wist T dist + Wcooprcoop)(& «, 2)

It is a linear combination of different rewards. The importance of each reward can be
altered via the corresponding weight w. We set all weights to 1 for our experiments, except
for wace,lat,i, as described above.

The first three rewards,

reel($,0,1) = 1 — |[U; — Umax|/Vmax clipped to [0, 1], Umax = 9m/s
Terash (8, @, 1) = —100 — 20v; /(1 m/s) if 4 crashed,
Tofitr (8, v, 1) = —200 if ¢ is off track,

are essential for the driving functionality: r incentivizes progress along the track, whereas
Terash and Togy,e penalize collisions and leaving the track. By assigning negative rewards to
longitudinal and lateral accelerations,

Tacelon(8, @, 1) = —al, Ja?, clipped to [-1,0], Guax = 5m/s?

Tacc,lat(sx, Q;, 1) = _al2at/ar2nax Chpped to [’LUL

the model learns to use moderate accelerations if possible. The penalty on lateral accelera-
tions effectively limits the velocity in the roundabout. The additional terms

Tlg(87 O‘ai) =-1 if Atl < Atxnimi7

raise (s, @, 1) = —10 if distance to preceding(i) < dmin,i

facilitate learning a safe behavior because they directly penalize undesirable behavior,
i.e., low time gaps and low distances. Thus, the RL agent does not need to experience a
collision for learning to avoid these situations. The thresholds dn; and Aty ; differ per
agent, fostering different driving styles.

Finally, the cooperation reward

Teoop (S, @, 1) = 7(s, v, J) if 4 has to give way to j

assigns the reward of the closest vehicle in the roundabout j to vehicle ¢. This reward
is only assigned when i is close (< 2.5m) to entering the roundabout. Effectively, this
encourages cooperative behavior: If vehicle j can drive unhindered, i also benefits from
the rewards of j. On the other hand, if the entry of ¢ forces j to brake strongly, ¢ will also
receive the resulting penalty.

Improving Robustness One major motivation for this work is to improve the robustness,
i.e., collision and off-track rate, of the policies compared to our previous behavioral cloning
approach [4]. While behavioral cloning does not allow for manual tweaking of the policy,
e.g., through the penalties 1, and 7q;s in safety-critical situations, our previous RL-based
approach [8] is a first step in this direction. Compared to [8], we now use the IPPO
method, which is better suited for MARL than the previously used soft actor-critic (SAC),

6
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Figure 2: Minimum, mean, and maximum  Figure 3: Histogram of time gaps of 2500

return gp at each training epoch, six repeti-  vehicles after 100 simulation steps. In these

tions. Higher values are better. simulations, all vehicles use the same At;,,
either 0.5s or 1.8s.

because it exclusively uses experiences from the current policy. SAC and other off-policy
methods learn from an experience buffer which also contains experiences from policies of
earlier training epochs. This increases the sample efficiency, i.e., decreases the number of
experiences required to converge to a good policy. However, MARL violates the underlying
assumption of stationary environment dynamics as these change along with the policy.
For example, it might be feasible to enter the roundabout with low speed at early training
epochs; as all other agents also drive slowly. The same behavior might be dangerous at
later epochs, as the other agents have learned to drive faster; the environment dynamics
have changed.

We further improve robustness by enforcing a relatively large minimum ¥, during
training. The large variance of the action distribution causes all vehicles to act more
randomly, such that the policy needs to be more robust to avoid critical situations, as the
randomized actions could otherwise lead to collisions.

4 Experiments

The training is performed simultaneously in 50 randomly initialized roundabouts with 1 to
20 vehicles. On average, we collect experiences of 650 vehicles per simulation step. Each
simulation terminates after 200 steps with a simulation step size of dt = 0.2s. The large
simulation horizon of 40s is required for the agents to experience the long-term effects of
their actions, e.g., that waiting at the roundabout entry eventually enables one to drive in.

The training progress is visualized in Fig. 2. Within 10 episodes, most agents learn
to stay on track and subsequently further refine their behavior to avoid collisions while
slowly increasing their velocity. The training typically converges after approximately 200
epochs, equivalent to 1 hour on an i7-9700 CPU @ 3 GHz. To ensure reproducibility, we
repeat the training six times with randomly initialized neural network parameters and
random initial simulation states.

We found that the cooperation reward 7, is essential for learning a policy that respects
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(a) Initial situation (b) dmin =5m (¢) dmin = 1m

Figure 4: Effect of varying the minimum safety distance d,;, of all vehicles, while keeping
all other parameters fixed: After 15s of simulation, the standstill distance between the
vehicles at the entry lanes is clearly distinguishable.

the right of way when entering the roundabout. Agents trained without cooperation reward
often squeeze into the roundabout, regardless of the impact on other vehicles. Ultimately,
this behavior often causes deadlocks, as more and more vehicles enter the roundabout. This
effect is reflected in the mean returns during training in Fig. 2: Policies trained without
cooperation reward require considerably more training epochs to achieve returns similar to
those trained with cooperation reward. Without cooperation, three out of six policies never
achieve good performance due to the above-described deadlock phenomenon. Effectively,
the cooperation term adds a reflection of the common interest of all agents—flowing
traffic—to the otherwise purely egoistic training goal, facilitating the convergence of the
IPPO method. All subsequent experiments investigate the cooperative policies.

After training, the policy is executed deterministically by selecting the mean value of
the action distribution instead of sampling. The preference values are randomly sampled for
each vehicle. We evaluate the policy by executing it in 200 randomly generated situations
for 200 steps with dt = 0.1, containing a total of 2570 vehicles, which is equivalent to 14
hours of driving. Compared to training, the step size dt is halved to improve the policy
performance by enabling faster reaction times. None of the six policies leaves the track in
any case. The best two policies produce 0 collisions, while the worst policy produces 5
collisions (0.2%), significantly less than in our previous RL-based works (approx. 1%) (8]
and our supervised learning based approach (approx. 3%) [4].

To demonstrate that our method learns an adaptive policy that can be changed at
execution time via the preference vector p, we demonstrate the effect of altering the desired
time gap Afy,, the minimum safety distance d,,;,, and the lateral acceleration weight
Wacelat i the following. To emphasize the effects, we always assign the same p to all
vehicles in a situation.

Keeping all other parameters fixed, we evaluate the effect of altering At,;, on the
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Figure 5: Influence of lateral acceleration cost weight wacc1a¢ 00 the behavior of vehicles.
Higher wyec 1ar values penalize lateral accelerations, leading to lower overall accelerations
as vehicles reduce their velocity in curves. This is shown for one single vehicle in 5a and
for a large number of vehicles in 5b.

time gaps occurring after 100 simulation steps in Fig. 3. Almost no time gaps below the
respective Aty can be observed.

Next, we vary the minimum safety distance d,,;,. The effect is shown in Fig. 4, where
the policy is applied to the same initial situation for 150 steps. The effect of switching
between d,;, = 5m and dp;, = 1 m is clearly visible when comparing Fig. 4b and 4c.

Finally, the effects of different lateral acceleration costs are visualized in Fig. 5. A
lower cost weight wacc1a¢ Permits higher lateral accelerations, enabling the vehicles to drive
with higher velocities in the roundabout, and vice versa.

5 Conclusion and Outlook

Our proposed approach learns a diverse policy that can represent different driving styles
through its preferences p: Minimum time gap, minimum safety distance, and lateral
acceleration penalty weight. At the same time, we maintain the main advantage of training
a single policy: Efficient training by leveraging the experiences of all agents to train
the same policy [15]. We demonstrate the emerging properties of the learned policies.
Moreover, we introduce a cooperation term that enables the otherwise purely egoistic
IPPO method to reliably converge in our roundabout setting.

Future work could address the online estimation of the preference vector, given observa-
tions of real-world driver behavior. Similar ideas have been applied in [2, 16] for manually
formulated parametric models. Subsequent predictions can then adapt to individual driver
behavior. Additionally, uncertainty can be expressed in the low-dimensional preference
space. A set of representative trajectory predictions can then be generated by rolling out
the policy with different preference values.
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