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Zusammenfassung: Validating the safety of automated driving (AD) is a problem of remark-

able complexity and practical relevance. New approaches are needed since a statistical proof of

safety based on field testing does not scale. Despite the attention paid to this topic in industry

and academia, a consensus or unified framework has not yet been reached. This work describes

and compares four distinct validation approaches. Our findings reveal that the current fragmen-

tary landscape can be partly explained by differences in the AD use cases. On the one hand,

there are different problem spaces characterised, e.g., by the operational domain and the driving

tasks. On the other hand, the solution space differs for business models related to end-customer

vehicles and mobility as a service.
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1 Introduction

Although modern driver assistance systems (SAE L2 [1]) can temporarily take over control
of the vehicle, they do not actually take over the responsibility which remains with the
human driver. Thus, advancing to automated driving (AD) of SAE L3 and beyond poses
much higher requirements for the development and validation of safe systems. Over
the last years, this topic has received remarkable attention in industry and academia.
However, there seems to be no consensus yet.

The principal challenges of validation of complex systems operated in an open con-
text have been discussed and formalised in [2]: Firstly, acceptance criteria are situation-
dependent and currently informal. Secondly, a real-world operational design domain
(ODD) is unstructured and bears infinitely many possible interactions [3]. Thirdly, the
emergent behaviours are hard to predict since they are the result of a complex interplay
of components (possibly including machine learning).

In general, none of these three interdependent aspects can be formally expressed in a
sufficiently complete manner. Therefore, there does not exist a standard notion of coverage
in this domain. Additionally, a naive approach based on the enumeration of combinations
of equivalence classes on relevant dimensions, e.g., road topology, dynamic objects and
environmental conditions, results in exponential blowup and renders an exhaustive set of
verification tests practically infeasible. Note that the primary concern lies beyond the
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scope of ISO 262626 [4] which does not define the necessary ‘nominal performance’ of
a safe system. The complementary standard ISO PAS 21448 [5] addresses ‘functional
insufficiencies’ but currently does not provide a detailed strategy on how to identify
them.

In this research work, we compare prominent proposals for AD safety validation and
highlight their similarities and differences. The goal is to help the reader understand the
different approaches and inherent challenges. Thereby, we want to initiate a discussion in
the academic community about research directions related to validation of AD.

This paper is organised as follows: First, related work will be discussed (Sec. 2).
Thereafter, a formal problem description will be introduced in Sec. 3. Based on this,
Sec. 4 will analyse four proposals. The paper concludes with Sec. 5.

2 Related work

Our previous publication [6] surveys the state of the art of testing of driver assistance
systems (SAE L1–2) at that time. The present work provides an extended and updated
view with a focus on automated driving systems (SAE L3–5).

Concerning the development of AD systems, [7] identifies and describes challenges from
both sides of the V-model process, e.g. challenges related to fail-operational designs and
complex requirements as well as testing of non-deterministic algorithms. The work [8]
discusses stakeholder (e.g., legislative) perspectives on testing of AD systems. Three
method clusters are identified, namely real world driving, formal verification and scenario-
based tests. The test methods are categorised based on the representation of the object
under test, the stimulus and assessment criteria.

Complementing the existing work, we identify practical AD validation challenges that
allow us to differentiate among validation approaches.

3 Problem description and challenges

The question how to validate an AD system via testing procedures has become more
and more important. Due to the more complex problem, more advanced methods than
a representative field test (black-box test) as employed for validation of driver assistance
systems are needed. Thereby, several practical challenges have to be addressed:

C1: Representativeness challenge: The goal of a test is to predict properties of the
realisation in its operational domain. Therefore, a set of situations has to be sampled
in order to accurately predict the operational context with respect to the purpose [11].

However, the openness of the context means that enumeration of situations does
not scale. Instead, a global random sampling strategy can be used to obtain a
representative set of situations, as it is done in field test drives. But, since such
an undirected sampling will encounter (small) critical subspaces only with a certain
(small) probability, the test duration increases with a decreasing frequency of critical
events.

These considerations are illustrated by the empirical statistics on disengagements of
autonomous vehicles [9]. Two examples, visualised in Fig. 1, show how the rate of
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Figure 1: Two examples of human driver intervention (disengagement) rates and driven
kilometres as published at [9]. Note that it is generally not known if all data is comparable
because the driving profile is unknown and might change over time, e.g. towards more
challenging situations. Further discussions can be found in [10].

improvement reduces over time although testing distances are significantly increased.
This could be regarded as a first indication for a ‘heavy tail safety ceiling’ [12].

C2: Closed-loop challenge: The AD function influences the vehicle’s trajectory and
thus the sensors’ perspective of the world. Moreover, due to interactions, the future
trajectories of other traffic participants are also influenced by the automated vehicle’s
behaviour. Thus, assessing an AD system requires to observe it in closed loop, at
least partially to consider the interaction with the environment.1

C3: Modelling challenge: Testing in a virtual environment requires that the context
(including e.g. behaviour of other traffic) and the realisation (including e.g. environ-
ment sensors such as cameras) have to be modelled. Additionally, the validity of the
models has to be shown, see [11] for a detailed formalisation of this challenge.

C4: Continuous improvements challenge: Due to the complexity of the task the
development of an AD function is necessarily iterative. However, each modification
may change the behaviour of the automated vehicle and the interaction with others
(cf. closed-loop challenge) compared to a recorded situation. Thus, conclusions from
previous testing data as well as models may become invalid.

C5: Insights challenge: Testing on system level, i.e. in a black-box manner without
exploiting structure in the realisation, prevents insights on sub-critical failures (cf.
[13, 14]). Thus, this kind of testing becomes largely uninformative and inefficient.

C6: Cross-domain, system-of-system challenge: End-to-end performance relies on
several, interacting systems from different domains in sensing, planning and actuation
that rely on different design and validation approaches.

1Note that this is different for certain driver assistance systems, such as an automatic emergency brake,
where solely the occurrence of a false intervention of an otherwise passive system shall be validated.



C7: Supervision challenge: Supervising an active automated driving function during
a real-world driving test is a very demanding task for humans, especially if necessary
interventions are very rare.

Note that there are additional challenges that are common to all approaches, such as legal
aspects and the safety of data-based algorithms (e.g. machine learning) [7].

4 Survey of validation approaches

4.1 Passive AD (shadow mode)

The basic idea of the shadow mode or passive AD approach is to use a large fleet of
human-driven vehicles to collect raw sensor data. After these open-loop recordings are
retrieved, a simulation environment is used for a closed-loop replay of the data to the
AD function [15, 16]. In another variant, the simulation environment runs on-line in the
vehicle and only some data, determined by trigger conditions, is retrieved [17].

Since the AD function is passive during the data collection phase, it exhibits no safety
risk. This enables a wide-spread roll-out to many end-user vehicles and would allow
achieving large test distances in manageable time. Technical challenges for implementing
the approach are:

• A sufficiently complete and correct transfer of the vehicle’s environment to the
simulation environment is necessary. Additional reference sensors, sensor data post-
processing or annotations by humans can be used [17], but the correctness and
completeness needs to be validated.

• For the simulation environment, the behaviour of other traffic participants has to
be modelled, in order to close the loop.

• If trigger conditions are used to identify and transmit only relevant data from crit-
ical situations, these triggers have to be validated for sufficient completeness and
correctness. Otherwise, a situation where the AD function would have planned a
dangerous trajectory could remain unnoticed.

• The transferability of data collected with human-controlled vehicles to autonomously
driven ones has to be argued. For example, it is sensible to assume that an AD vehi-
cle drives defensively, e.g. leaving sufficient gaps, which might provoke more cut-in
situations than a human driver would experience.

Conclusion Silently testing in end-customer vehicles improves scalability since there
is no supervision challenge (C7) and the passive function can be continuously improved
in the background (C4). However, there are several caveats that must be addressed
before the open-loop recordings can be used as a validation argument. On the one hand,
a sufficiently accurate simulation environment is needed to close the loop (C2). The
dependence on models (e.g. reference environment model, sensor and behaviour models)
reinforces the modelling challenge (C3). On the other hand, the representativeness of the
data from human-controlled vehicles with respect to the AD function needs to be argued
(C1). Additionally, if data can be recorded only selectively, there is limited insight into
the system (C5).



4.2 Formally safe planning and statistically validated sensing

The authors of [18]2 argue that scalability in the sense of mass production and ‘everywhere’
automated driving is not feasible with merely statistical data-driven validation. As a
solution, they propose to combine a data-driven validation of the perception system and
a formal model that guarantees for the safety of planned trajectories given a correct
environment perception.

Data-driven validation of the perception system Firstly, the rate of situations
being erroneously considered unsafe (safety-critical ghosts) or erroneously considered safe
(safety-critical misses) shall be statistically validated by field tests.3 Multiple parallel
sub-systems, preferably based on different sensor technologies, with an assumed known
probability of common errors are used in order to argue a lower failure rate of the combined
perception system. Technical challenges with this approach are:

• Assumptions about the probability of common errors have to be validated. Note
that small errors can cause a strong underestimation of the overall failure rate [19].

• Reference (ground truth) data of the environment model is needed in order to es-
timate the rates of safety-critical ghosts and misses. A straight-forward calculation
based on the assumptions in [18] necessitates reference data on the order of magni-
tude of 105 h.

• Estimating the frequency of ghosts and misses is a not symmetric problem. While
ghosts may occur at any time, a safety-critical miss can only occur if there is a
dangerous situation. This imbalance may lead to much wider confidence intervals
(or increased test durations) when estimating the frequency of safety-critical misses.

• Similar to the approach from Sec. 4.1, the profile of data collected for perception
validation might differ from the statistics if the vehicles drive autonomously.

Formal guarantees of the safety of the planned trajectories The planning com-
ponent is designed to be intrinsically safe by means of a safety envelope. To this end,
the Responsibility Sensitive Safety (RSS) model is introduced. This model aims for a
universally valid and explainable rule set that confines the actions of the actual trajectory
planner. To achieve this, the ‘elusive directive called duty of care’ is made explicit in form
of five rules, e.g. ‘right-of-way is given, not taken’ [18]. From these rules, quantitative
constraints, e.g. in the sense of minimum safety distances, are derived.

Achieving generally accepted rules relies on two important premises. Firstly, the
set of traffic scenarios used to derive the rules are exhaustive, especially when it comes
to exceptional situations [3]. Secondly, the behaviour of other traffic participants can be

2Note that we directly refers to v6 of [18], as there have been substantial changes in the past.
3Note that there is an important distinction between safety-critical ghosts or misses and false positive

or false negative detections in the perception system. Although detection errors are the usual causes for
the former, a ghost or miss can also be caused by measurement errors, e.g. a noisy distance measurement.
Furthermore, not every false positive or negative detection of the sensors will change the judgement of a
situation as safe or dangerous, i.e. produce a safety-critical ghost or miss, respectively. Therefore, these
error definitions are tied to the formulation of safety envelope which decides whether a situation is safe
or dangerous.



modelled with a realistic set of parameters, e.g. the maximum reasonable deceleration that
a lead vehicle might apply. It is currently unclear how realistic parameter values can be
obtained or if it is even possible to assign single values that are adequate in all situations.
Instead, it might be necessary to let the parameter values depend on the current situation
to represent the societally accepted boundary between agile and dangerous behaviour.
Implementing a rule set requires modelling of behaviour and motion of the ego vehicle
and other traffic participants. Shalev-Shwartz et al. [18] use simple kinematic constraints,
however more general techniques such as reachability analysis provide stronger guarantees
and allow integrating further sources of uncertainty [20].

Conclusion Overall, the idea of formalising acceptable behaviour of an AD vehicle
has its strengths in formally resolving the closed-loop (C2) and supervision challenges
(C7). Moreover, explainable rules can help in increasing insight and transparency of the
behaviour planning (C5). The cross-domain challenge (C6) is addressed by separation of
concerns between perception and planning. However, to be applicable, error probabilities
of the perception system have to be estimated and a generally valid set of parameters in
the RSS model has to be argued. Since the model and its parametrisation take a central
role, the corresponding modelling challenge (C3) is a key challenge for this approach.

4.3 PEGASUS: Scenario-based (top-down) approach

PEGASUS4, a German publicly funded project, aimed at developing methods for ensuring
the safety of automated driving on the example of a SAE L3 (conditional automation)
‘highway chauffeur’ function.

The core of PEGASUS approach are scenarios. Their description is based on a six-layer
model to compositionally model static and dynamics aspects in a joint description [21].
Scenarios can be identified from system knowledge [22], domain modelling [21,23] and field
observation [17]. Scenarios feature parameters that can be varied in order to increase their
coverage.

Scenarios are used as test cases that are executed and evaluated in simulation or
on test tracks. Corresponding criticality metrics are used to determine the automated
driving capabilities. Virtual testing enables reproducible tests and large scale parameter
variations. One goal of test track testing is a point-wise validation of the simulation
model. Additionally, real-world drive tests are conducted.

The scenario-based approach is developed together with an assessment of its validity
and two major limitations have been identified:

1. Risk of generating the wrong scenarios: On the one hand, if scenarios are derived
deductively the completeness and relevance is difficult to achieve. On the other hand,
if scenarios are identified inductively from field data, the completeness depends on
the metrics and models used. Additionally, the data might be incompletely mapped
to a test case.

2. Risk of a wrong selection (reduction) of scenarios: Test cases might be defined based
on equivalence classes although the underlying scenarios are in fact not equivalent.

4Project for the Establishment of Generally Accepted quality criteria, tools and methods as well as
Scenarios and Situations



Concerning scenario parameters, the challenge is to find representative value ranges,
a suitable discretisation and to cope with the exponentially increasing number of
combinations.

Conclusion The PEGASUS approach attempts to standardise and make AD safety
requirements transparent with a scenario-based approach. The most challenging aspect
of this is to find the right set of scenarios (C1 representativeness). The closed-loop (C2)
and insight (C5) challenges are alleviated by also using simulations for test case execution.
However, before this can be achieved, the simulation environment has to be validated (C5
modelling). The PEGASUS concept addresses this with a cross-check between test cases
executed on test tracks and in simulation. Nevertheless, representativeness and modelling
are core challenges for the PEGASUS approach.

4.4 Continuous validation

The previously described validation approaches mostly break down the overall problem
into several successive steps, e.g. sensor data is collected and the safety of the AD system
argued by simulation (Sec. 4.1) or statistical analysis and a formal model (Sec. 4.2).Thus,
there are expectations that some elements, e.g. a simulation environment, will have been
developed and validated because other elements rely on them.

However, this may be problematic in practice due to dependencies and a necessarily
iterative development of an AD system. An alternative is to consider the development of
the AD system and the validation infrastructure as a joint iterative process. An applied
example with the scope of validating SAE L4 robotaxis can be found in [24].

Iterative data- and simulation-driven development The core of this approach is
an iterative development and testing cycle with strong links between the different test
strategies as illustrated in Fig. 2. This includes domain and system analyses, test track
testing, virtual testing and field tests. The complementary nature is key to efficiency and
effectiveness of the iterative cycle.

Exemplarily, field testing can identify edge case scenarios that are hard to identify
otherwise. However, to cope with the continuous improvement challenge, recorded field
test data must be reusable in a closed-loop simulation environment for reproducibly testing
and generalising such scenarios. In addition to the random sampling-based field tests, test
cases should be derived from systematic analysis of both the AD system and the simulation
environment. Improving the realism of the simulation environment is equally important
in order to rely on the efficiency of virtual testing. Otherwise, critical scenarios might be
overlooked in virtual testing and would turn up later as surprises in field tests.

Incremental deployment and supervised operation A mobility as a service appli-
cation benefits an iterative approach by means of the operation and deployment strategy.
Firstly, the service can be launched under supervision of a safety driver. Secondly, a fine-
grained and incrementally growing ODD is possible. The ODD for the fully automated
vehicles (i.e. without safety driver) within a larger fleet can be defined on the level of
individual customer trips. Third, frequent maintenance stops and remote monitoring of
all vehicles are possible.
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Figure 2: The iterative approach builds on continuous improvements of the system and
models in a feedback loop with multiple ways to generate test cases.

Conclusion The sketched approach relies on similar elements as the ones discussed be-
fore, but integrates these complementary elements tightly. An iterative approach benefits
from an incremental deployment that is only possible in mobility as a service applications.
However, it is hampered with respect to scalability as new service locations are iteratively
added and may exacerbate the continuous improvement challenge (C4), especially in the
long tail, as new location may invalidate previously collected data, knowledge and models.
This depends heavily on the balance between implicit knowledge such as field-data and
explicit knowledge such as perception models including common errors. The supervision
challenge (C7) must be specifically considered as it is difficult for humans to supervise an
ever more capable automated driving function. Furthermore, the iterative nature must
not conceal the fact that eventually, acceptance depends on explainable criteria. Thus,
the approach could benefit from elements found in other, e.g. transparent rules for safe
behaviour or coverage criteria.

5 Conclusion

As we have seen, different AD use cases, e.g. highway chauffeur or robotaxi, can induce
quite different safety validation concepts. One reason is that the associated business
case has a large impact on validation and its challenges, e.g., by carefully restricting the
ODD or alleviating the supervision challenge. This concerns the initial release scope and
its corresponding ODD but also scalability with respect to vehicle variants, geographic
distribution and resulting diversity in ODDs. On the one hand, OEMs and suppliers
of end-customer vehicles have to consider many vehicle variants in different price ranges
that are used worldwide. On the other hand, driver-less mobility services are typically
characterised by a homogeneous vehicle fleet and a restricted operational domain. The
vehicle fleet might initially consist of vehicles with and without a supervisor, enabling a



fine-grained and growing ODD.
This work provides some first insights by identifying and discussing several validation

challenges. While overall metrics and information for a public audience are available for
individual approaches, detailed information to further analyse the progress with respect to
the presented validation challenges is currently lacking. In future work, we try to reduce
this information gap by further detailing on validation challenges and how current and
future approaches could address them.
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