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Abstract: This contribution investigates dependability threats to automated driving systems

pertaining to the environment perception. The identification of factors that can lead to safety-

relevant system failures is essential for assuring safety of automated driving systems. We estab-

lish a comprehensive taxonomy for the classification of perceptual threats based on a functional

decomposition of automated driving systems. Moreover, we use an exemplary lane keeping as-

sistance system to describe different types of threats by using the taxonomy. The proposed

taxonomy enables the opportunity for future work on a safety validation concept for perception

components.
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1 Introduction

Safety validation of automated driving systems is a challenge that needs to be met for the
introduction of self driving vehicles on public roads. However, safety validation concepts
for higher1 automation of vehicles are yet to be developed. One approach that is already
present in other domains and currently researched for automated driving systems is the
method of functional decomposition [2]. Instead of verifying the complex system as a
whole, the verification of less complex single components is examined. Shifting from
vehicle level verification to component level verification offers the advantage to apply more
specific verification methods for different components. The verification process therefore
gains more manageability and flexibility. However, a downside to a decomposition-based
verification is that threats have to be accounted for separately, which are not safety-
relevant for a single component, but can become safety-critical when propagating along
the following components.

Regarding an automated driving system the verification of the perception component
is challenging and therefore of special interest. The perception component must guarantee
detection of all relevant objects with a certain quality in a fixed time interval to ensure
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safe behavior of the self driving vehicle in every possible scenario [3]. This requirement,
however, is still too vague to be tested considering that there is an infinite amount of
possible scenarios that can happen. In order to formulate meaningful requirements for
environmental perception of an automated driving system it is essential to identify possible
threats for a perception component, where they can potentially originate from and what
influence they can have on the whole system performance. Moreover the identification of
possible threats can enable a better understanding of dependability threats a perception
component should handle itself, which threats should be handled by subsequent processing
and which threats should not occur.

In this work, we establish a taxonomy for perceptual threats to automated driving
systems. We characterize perceptual threats by functionally decomposing environmental
perception components into its constituent processing parts. The resulting interfaces of
the decomposed parts can then be used to derive potential dependability threats.

2 Related Work

In the following contributions related to functional decomposition and regarding depend-
ability threats in general and specifically caused by the perception component are intro-
duced.

Amersbach et al. [4] functionally decompose automated driving systems into six layers
based on the human driving task for the definition of particular test cases. The de-
composition layers are information access, information reception, information processing,
situational understanding, behavioral decision, and action. The proposed decomposition
is not further distinguished into more layers to be applicable for various automated driv-
ing systems. However, to define requirements for the perception component there is a
need for the definition of dependability threats based on a more specific decomposition
of the environmental perception and the subsequent processing into an environmental
model. Therefore, in this work we focus on the information processing layer by decom-
posing it and identifying corresponding dependability threats. While the contribution by
Amersbach et al. [4] lacks a more detailed decomposition of the task of perceiving the
environment, Rosenberger et al. [5] take a closer look into the information processing layer
and functionally decompose a lidar sensor system. They define differently abstract inter-
faces along the lidar data processing chain: the raw scan of the lidar sensor, the resulting
point cloud and an object list which contains geometric and physical attributes. These
interfaces are then used for a more detailed comparison of real and synthetically generated
lidar measurement data using different metrics for different interfaces. A similar approach
for the differently abstract representations of sensor data is also considered in this work.

A contribution that deals with the identification of perceptual uncertainty is proposed
by Hanke et al. [6]. They examine the construction of a statistical sensor model for the vir-
tual test of automated driving systems. To provide more realistic testing conditions they
investigate the integration of lossy perception process characteristics into sensor models.
To do so, they define the output interface of the model to consist of several model units
where each of these units deals with one specific perception error. However, their work
primarily focuses on objects and does not distinguish between different processing steps
of sensor data. Another contribution for the classification of perceptual uncertainty is
made by Dietmayer [3]. He describes the task of machine perception for automated driv-



ing and distinguishes its uncertainty into three uncertainty domains: state uncertainty,
existence uncertainty and class uncertainty. State uncertainty deals with uncertainty re-
garding state variables such as position, kinematic or size of detected objects. Existence
uncertainty refers to the uncertainty whether an object that was perceived actually ex-
ists. Class uncertainty describes the uncertainty concerning the semantic classification
of detected objects. In this work we combine the classification of perception threats and
where they can occur along the processing chain by considering differently abstract repre-
sentations of sensor data. However, due to the different components processing the sensor
data and therefore several potential causes for dependability threats arising, there is a
need to differentiate these threats. A general approach to classify dependability threats
is conducted by Avižienis et al. [7]. They establish basic concepts for the dependability
of computing and communicating systems and distinguish threats to dependability into
faults, errors and failures and define them subsequently. While faults are causes to er-
rors, errors can propagate and eventually lead to a failure of a subsystem. Moreover, the
characteristics of faults, errors and failures are discussed and different measurements to
handle dependability threats are addressed. We adapt the definitions of Avižienis et al.
to the perception component of automated driving systems.

While there are various contributions towards functional decomposition and catego-
rization of perceptual threats and uncertainties, there is no known comprehensive tax-
onomy for the classification of threats to and from the perception component while also
considering differently abstract levels of perception data in regards to the functional sys-
tem architecture of automated driving systems.

3 Research Questions

Research Question 1 How can dependability threats to automated driving systems per-
taining to perception components be characterized?

For the establishment of a comprehensive taxonomy regarding dependability threats to
and from perception components, we functionally decompose an automated driving system
into components with well-defined tasks to receive precise interfaces. For that matter
we extend existing approaches to functional decomposition (cf. [4], [5]) by respecting
the individual steps of the perceptual processing chain of automated driving systems
(cf. [8, p.47]). Moreover, we adapt the taxonomy for dependability threats by Avižienis et
al. [7] (fault, error, failure) for the perception component of automated driving systems.

Research Question 2 What types of perception errors do exist and how can they be
classified?

When considering the task of perceiving the environment and processing different sen-
sor data, there are several possibilities for the occurrence of errors from the raw scan of
the environment up to the generated environmental model. Moreover, not every error
or uncertainty has to be relevant for the automated driving system safely performing its
driving task. Based on the functional decomposition, which is part of the first research
question, we derive possible errors of perception components in this contribution. Fur-
thermore, our proposed taxonomy for the classification of dependability threats to the
perception component is evaluated by an exemplary lane keeping assistance system based
on a camera.



4 Methodology

Robot systems are often distinguished into Sense, Plan and Act components. Adapted to a
self driving vehicle, Sense includes the task of perceiving the surroundings and generating
a model of the environment. Plan subsumes interpreting and predicting of future behavior
of surrounding traffic participants based on the environmental model and then choosing a
trajectory to be driven. Act stands for executing the planned trajectory by steering and
accelerating or braking while also performing actions like indicating lane changes. This
cycle is repeated for every scene2. A more detailed decomposition of automated driving
systems is conducted by Amersbach et al. [4]. Figure 1 shows the decomposition layers of
Amersbach et al. [4] mapped onto Sense, Plan and Act components.

Due to automated driving functions being highly complex systems consisting of various
components, it is essential to identify the factors that can lead to safety-relevant system
failures. In this section we propose a taxonomy for the classification of dependability
threats to automated driving systems while focusing on the perception component. For
that, we stick closely to the concept of faults, errors and failures introduced by Avižienis
et al. [7] while also considering the differently abstract levels of sensor data representing
the environment.

Avižienis et al. [7] define a fault as cause of an error. They distinguish between internal
and external faults of a system. When a fault causes an error, it is active, otherwise it is
dormant. An error is part of the total state of the system. When one or multiple errors
cause the delivered service of the system to deviate from correct service, a failure occurs.
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Figure 1: Functional decomposition by Amersbach et al. [4] mapped onto the Sense-Plan-
Act-Paradigm

We assume that errors can occur in every step of processing environmental sensor
data. Therefore we have to look at the data each component provides to the following

2We adopt the definitions of scene and scenario by Ulbrich et al. [9]



component. The raw scan of the surrounding environment is processed into a model
of the surrounding environment and therefore exists in differently abstract levels during
the processing. Considering the functional system architecture of automated driving
functions [8, p.47] on the lowest level, there is a raw scan of the environment consisting of
the data generated by the different sensors. Based on that different features like objects,
traffic signs or road markings are detected. On the highest level all features are merged into
a scene - a representation model of the environment. Figure 2 illustrates the processing
of environmental sensor data and summarizes where the dependability threats, which are
introduced in the following, can occur.
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Figure 2: Processing chain of the perception component and potential occurrences of
dependability threats relating to the Sense component as a system

4.1 Fault

Referring to our taxonomy, a fault is the cause of a perception error. Considering that
there are different types of perception errors, there are also different types of faults to the
perception component subsequently. On the one hand, errors that are propagating along
the processing chain can be seen as faults to the resulting errors. On the other hand, each
processing step of sensor data can contain its own faults (cf. Figure 2). When creating
a raw scan of the environment, there are two types of faults: external faults and internal
faults. External faults are disturbance variables like environmental conditions which can
obscure the accessible information. Internal faults are either linked to the hardware,
e.g. a systematic measurement error of a sensor, or are anchored in the software, e.g. a
flawed point cloud generation out of received lidar beams. Faults to the processing of the
raw scan into features are e.g. bugs in the object segmentation based on point clouds
or images. When generating a scene, faults are either errors on feature level or present
because of flaws in the scene modeling. An exemplary fault on this level is e.g. a incorrect
lane matching algorithm for perceived vehicles.

4.2 Error

Each of the different representations of the environment can be inaccurate and therefore
be subject to errors (cf. Figure 2). Examples for errors in these differently abstract
representations are e.g. a blurred camera image on raw scan level, an object that is
seen which is not existent on feature level and a correctly perceived traffic light that is,



however, linked to an incorrect lane on scene level. According to Avižienis et al. [7], many
errors do not affect the system’s external state.

4.3 Failure

According to Avižienis et al. [7] a system failure occurs when the delivered service deviates
from correct service. In terms of the environmental perception, the question arises what
correct service of the perception component of an automated driving system comprises.
According to Dietmayer [3], correct service is delivered by a perception component when
all relevant objects are detected with a certain quality within a fixed time interval. More-
over, the objects have to be correctly assigned to the traffic infrastructure. Hence, the
delivered service deviates from correct service when either not all relevant objects are seen
or when there is a mismatch in the modeled scene. In this case, the automated driving
system would not be able to evaluate the situation appropriately anymore and therefore
not be capable of performing its driving task safely enough.

5 Classification of Perception Error Types

In the following, both errors on raw scan level and on feature level are examined. To
that end, raw data errors for the sensor technologies camera, Lidar and Radar are briefly
discussed. Consecutively, we will derive errors on feature level by individually considering
the single parts that make up the environment. While doing so, we are also referring to
commonly used approaches on how this accessible information is included into the scene
modeling.

5.1 Raw Scan

Errors on raw scan level are anchored in the raw data3 generated by the deployed sensors.
Due to the fact that different types of sensors generate different kinds of raw data, it is not
possible to define common errors on this level of environmental representation which are
applicable for every type of sensor. Instead the raw data of the different sensor types has to
be looked at separately. Raw data generated by a camera are in general images consisting
of pixels. Image noise due to the level of illumination or image distortions caused by
effects like rolling shutter are therefore examples for camera raw data errors, as well as
whole missing image sections (e.g. missing traffic signs due to flickering when capturing a
variable-message sign over time). A Lidar sensor emits laser beams into the environment
and measures their echoes. For each laser beam, a measured distance is recorded and,
depending on the sensor implementation, other values like intensity or echo-puls-width are
also obtained. Therefore, the raw data of a lidar consists of tuples of measured values. [5]
Uncertainties in these measurement tuples due to noise, non-measured echoes or broken
down channels can be considered as lidar raw data errors. According to Holder et al. [10]
raw data of a radar is defined as the range-doppler-beam spectrum at the interface after
the spectral analysis of the sensor readings and before the subsequent post-processing,
which typically starts with a thresholding. Common distortions that occur in these raw
data are defined as artifacts by Holder et al. [10]. While these artifacts obscure the

3We adopt the definition of raw data by Holder et al. [10].



accessible information, they can be seen as errors. Causes of such artifacts are e.g. mirror
reflections, aliasing or electronic noise in the sensor [10].

5.2 Features

Errors on feature level are dependent from the different features that are considered for
the scene modeling. For the definition of errors on this level it does not matter based
on which kind of raw data the feature was extracted. Errors regarding features can be
derived by looking at the elements which the environment consists of. Subsequently,
we first decompose the environment into its parts. According to Ulbrich et al. [9] the
environment consists of movable objects and the scenery. The scenery is then split up
into the lane network, vertical elevation, stationary elements and environment conditions.
Lanes and conflict areas belong to the lane network. Stationary elements are among other
things obstacles, curbs, traffic signs and traffic lights. Figure 3 illustrates the decomposed
elements of the environment.

Environment

Movable
Objects

Scenery

Lane
Network

Lanes Conflict Areas ...

Environment
Conditions

Vertical
Elevation

Stationary
Elements

Curbs Obstacles Traffic Signs/Lights ...

Figure 3: Elements of the environment according to Ulbrich et al. [9]

One part of the environmental perception is to detect existing movable objects. When-
ever an object is not detected an object is missed by the environmental perception. A
non-existing movable object, that is detected, is called a phantom object. Both of these
cases can increase the risk during automated driving. But even when an existing object is
perceived, there is an uncertainty that comes with every measurement. Ideally a movable
object is represented by one bounding box instead of multiple ones. Regarding static
non-continuous attributes of movable objects, like the classification, it is trivial to define
that any deviation from the real classification is an error. However, concerning attributes
that are continuous (e.g. dimensions) and attributes that are additionally dynamic and
therefore can change over time (e.g. position and kinematics), it is not obvious when an
uncertainty could propagate into a safety relevant error. This depends on the relevance
of the perceived objects to the driving task as well as the robustness of the automated
driving system. Possible errors regarding movable objects are summarized in Figure 4.

Traffic signs and lights are mandatory for managing traffic flow. For an automated
driving system to abide by the road traffic regulations, traffic signs and lights need to
be correctly captured, matched to their corresponding lanes and considered in the path
planning. Regarding the definition of perceptual errors related to traffic signs, we differ-
entiate between missed traffic signs, phantom traffic signs and correctly perceived traffic
signs, which are, however, afflicted with uncertainties. Because traffic signs are static
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Phantom Object
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Figure 4: Errors regarding movable objects

(unlike movable objects), it is easier to define when an uncertainty might propagate into
a safety relevant error. The position of the traffic sign needs to be captured accurately
enough to be correctly matched to its corresponding lane. For the interpretation of the
traffic sign both the class (e.g. a speed limit) and the value (e.g. 80 km h−1) have to be
recorded correctly. While the value of most traffic signs does not change over time, traf-
fic lights and variable-message signs are dynamic elements and therefore do not exclude
changes regarding their value (e.g. a traffic light changing from green to yellow). Figure
5 summarizes the introduced errors.
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is detected
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Non-existing Traffic Sign

Non-existing Traffic
Sign is detected

Phantom Traffic Sign

Non-existing Traffic
Sign is not detected

Figure 5: Errors regarding traffic signs

Lanes are defined by lane markings which imply the lane boundaries. In urban ar-
eas lane boundaries are additionally represented by curbs. Multiple lane marking seg-
ments form a continuous lane marking. For the automated driving system to construct
these continuous lane boundaries, the lane marking segments need to be captured by the
environmental perception. Moreover, overlapping lanes form conflict areas. We define
overlooked lane marking segments as missed lane marking segments and detections of
non-existing lane marking segments as phantom lane marking segments. Detected lane



marking segments can be uncertain in regards to their exact position and characteristics
(e.g. curvature) and their class (e.g. solid, dashed, curbs), which also includes the color
for lane markings (usually white or yellow). The class attribute is mandatory to know
whether a lane boundary can legally be crossed and hence needs to be considered by the
path planning. Any deviation from the real class can subsequently be considered as an
error. Position and characteristics of lane marking segments are continuous values and
need to be accurate enough to create a precise lane network. As soon as the lane network
cannot be clearly derived by the detected segments, the uncertainty can be interpreted as
safety-critical. Errors regarding lane marking segments are summarized in Figure 6.
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Figure 6: Errors regarding the lane network

One approach to capture vertical elevation is by estimating the ground plane. This
information is not only important for path planning, but can also be used to improve
quality of object detection [11]. Regarding a point in the environment, it either belongs
to the ground plane or not. Subsequently, errors regarding ground mark classification are
either overlooked ground marks or misleadingly classified ground marks (cf. Figure 7).

The integration of surrounding obstacles and not accessible areas into the path plan-
ning of a robot system is often implemented by creating an occupancy grid. For the
creation of an occupancy grid, the environment is divided into grid cells. Afterwards, for
each grid cell it is determined whether the cell is occupied or not. Hence, possible errors
regarding the occupancy grid are either occupied cells which are classified as not occupied
(overlooked obstacle) or not-occupied cells which are misleadingly classified as occupied
(not-existing obstacle) (cf. Figure 8).
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Figure 7: Errors regarding ground mark classification
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Figure 8: Errors regarding occupancy

6 Case Example: Lane Keeping Assistance System

To show the applicability of the presented taxonomy, we consider a lane keeping assis-
tance system as case example and its handling of exemplary dependability threats in a
hypothetical scenario. Task of the considered assistance system is to detect lane marking
segments in a camera image, model them to lanes and subsequently assist the driver with
lateral control of the vehicle to keep the lane. Figure 9 shows the functional architec-
ture of the Sense component of the exemplary system and one possible hazard, which is
analyzed in the following.

We now consider for the system to run into a scenario where the correct service cannot
be maintained without making adjustments. While the camera captures lane marking
segments, we assume a low hanging sun to blind the camera for a short time and therefore
cause overexposed images. That results in Errors in the raw data because the image misses
parts of the environment and therefore does not represent all of the accessible information.
Extraction of lane marking segments based on these images leads to Missed Lane Marking
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Figure 9: Case Example: Handling of exemplary dependability threats for a Lane Keeping
Assistance System

Segments and therefore an incomplete set of lane marking segments. To deal with these
false negative errors, the hypothetical system contains a component for Error Detection,
which can trigger Fault Handling of the environment scanning to avoid Errors in the
images of upcoming iterations and trigger Error Handling to cope with defective images
for the current iteration. According to Avižienis et al. [7], the combination of Fault
Handling and Error Handling form System Recovery.

In this case example, Error Handling is implemented by Compensation (cf. [7]). The
compensation comprises relying on predicted lane marking segments that were generated
during feature extraction of earlier iterations (e.g. by using a Kalman-Filter). Both
predicted and the set of incomplete lane marking segments are then provided to the
subsequent lane modeling. Simultaneously to Error Handling, Fault Handling in the
environment scanning is triggered. To cope with the low hanging sun and to avoid Errors
in the camera images, camera settings are reconfigured (e.g. light shade and exposure
time). Therefore, according to Avižienis et al. [7] Fault Handling in this case means
Reconfiguration. This results in less overexposed camera images for upcoming iterations.

Based on the executed System Recovery, lane marking segment extraction and sub-
sequent lane modeling can then be sufficiently precise again for the Sense component to
deliver correct service without considering predicted lane marking segments of an earlier
iteration.

7 Conclusion and Future Work

In this contribution a taxonomy for the characterization of dependability threats to per-
ception components is established. For that, the task of environment perception is func-
tionally decomposed and thus precise interfaces are created. Subsequently, the concept of
faults, errors and failures is implemented to include causalities between the threats along
the processing chain of environmental perception. For the classification of perceptual error



types, both the raw scan of the environment and extracted features are closer examined.
Within the scope of this work, raw data of camera, Lidar and Radar is briefly discussed.
For the definition of perceptual errors on feature level, possible errors are derived by
splitting up the environment into its subsequent parts and considering in which aspects
extracted features can be flawed. Since for the definition of these errors the components
of the environment established by Ulbrich et al. [9] have been considered, we do not claim
for our error classification to be exhaustive. The proposed taxonomy is supported by an
exemplary case example.

Since our focus was deducting perceptual errors on feature level, future work should
also address dependability threats on raw scan and scene level in more detail, especially
regarding possible faults. Moreover, future work should deal with the influence of differ-
ent kind of threats on the robustness of automated driving systems focusing on the Sense
component. Acquiring information about how precise environmental perception must be
is a key step for safe system design. Therefore, not only false negative and false posi-
tive errors, but also uncertainties of true positives should be investigated in more detail.
Additionally the importance of surrounding objects has to be considered, since not every
object is of relevance for the automated driving system. Subsequently, not every error
is safety-relevant and thereby results in higher safety risks of automated driving system.
Defining and also refining of safety requirements revolving around the environmental per-
ception will be a key challenge to solve for the safety validation of automated driving
systems.
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