
Learning Realistic High Level Decisions for
Autonomous Driving at Complex Intersections

Danial Kamran, Martin Lauer and Christoph Stiller∗

Abstract: In this work we use deep Q network (DQN) approach to learn high level actions

for automated driving at un-signaled intersections. Using lanelet map, history of positions and

velocities for vehicles close to the intersection are calculated that provide a generic state repre-

sentation for the Reinforcement Learning (RL) agent to handle different types of intersections.

Moreover, we define safety and utility reward functions and use weighted average of them as

total reward in order to evaluate the situation more precisely. The goal is to learn optimal

policy which is safe but also not overcautious. According to our experiments, using such reward

function, the agent can successfully learn an optimal policy which only stops for the vehicles

close to the intersection and will drive fast when vehicles are far from the intersection.

Keywords: Decision Making for Automated Driving, Reinforcement Learning, Un-signaled

Intersections, Deep Q Networks

1 Introduction

One of the most important challenges for automated driving in urban areas is navigating
through un-signaled intersections. In such situations, there is no traffic light to give way
and take way to vehicles and therefore, the vehicles should themselves realize when to
pass the intersection without having collisions. Besides safety, utility and comfort are
also two important factors during crossing intersection which means the vehicles should
prevent being too much cautious or having jerky maneuvers.

Several rule-based solutions have been presented for handling un-signaled intersections.
In [1], hierarchical state machines were designed in order to handle different situations at
intersections. In most of cases, time-to-collision [2] between ego vehicle and other vehicles
is used as the main reasoning feature for handling intersection crossing. Although TTC
can provide a safe and reliable solution, it assumes constant velocity for other vehicles
and therefore it has similar reaction to vehicles with different intentions. In other words,
TTC as the only reasoning factor can not provide information about future intention of
vehicles which will result overcautious maneuvers.

Recently reinforcement learning (RL) techniques have been utilized for high level de-
cision making for automated driving [3]–[6]. Generally RL based decision making ap-
proaches try to increase utility as much as possible without forgetting about safety of
maneuvers. By utilizing plenty of interaction experiences between agent and environ-

∗Institute of Measurement and Control Systems, Karlsruhe Institute of Technology (KIT), 76131
Karlsruhe, Germany (e-mail: {danial.kamran, martin.lauer, stiller}@kit.edu).

Figure 1: Overview of the yielding scenario and the features we used for situation repre-
sentation. Blue car is ego vehicle and red cars are vehicles that have collision zone with
ego lane. Gray car which has no collision zone with the ego lane is discarded.

ment (simulator), these approaches try to find long term optimal decisions which increase
cumulative future reward.

One of the main challenges that still needs to be addressed for RL based automated
driving solutions is realistic and generalized problem formulation for better portability in
different simulation scenarios and also in real world. Therefore, the features that are being
used for learning should be generalized and less dependent on the scenario. Moreover,
complexity of learning structure and the amount of required training time for converging
to an optimal policy has to be reduced as much as possible in order to prevent damages
that the agent is likely to suffer specially due to the so called catastrophic forgetting [7],
[8] and also overfitting [9] issues.

The main contribution of this paper is presenting a generic Reinforcement Learning
(RL) algorithm for learning optimal behavior to drive through different types of un-
signaled intersections safe and also without being conservative. Utilizing Lanelet2 maps
[10] with enriched information about geometry of intersections, we propose a parame-
terized state representation based on the distance and velocities of the vehicles along
the curvature (figure 1) which makes it less sensitive to the geometry and structure of
intersection.

Another contribution of the proposed approach is learning high level actions as the
behavior instead of low level control of the ego vehicle, which makes the RL agent suitable
to be used as a conventional decision making module for generating velocity constraints
for trajectory planning and control module in an automated driving pipeline (figure 2).

1.1 Related Works

There are some approaches that use reinforcement learning for the yielding scenario similar
to this paper [3], [4]. In [3], authors try to learn optimal time or sequence of accelerations
for passing occluded intersections using deep Q Networks (DQN). They use top view image

of the intersection marked with location and velocity of vehicles as state representation
of their RL algorithm. In the output, they compared three different actions: time to
start driving, sequential accelerations and creep-and-go for passing the intersection. The
results show small amount of collisions and faster drives comparing to the TTC approach.
However, the main disadvantage for this work is using image based state representation
which makes the algorithm not generalizable and more sensitive to intersection and road
geometries as part of state representation. To overcome this problem, parameterized state
representation similar to [4], [5] can be more efficient and make the algorithm more generic.
In [4] parameterized state has been used for the same yielding scenario but generating
high level decisions in the output instead of time-to-go or acceleration values. Although
they provide different techniques to improve network convergence, there is no evaluation
on complex intersections where we can see how good the algorithm is generalized. Since
there is only safety evaluations of the algorithm by measuring percentage of accidents, we
also do not know if the presented algorithm is overcautious or not and how fast can drive
through intersections.

2 Problem Statement

As explained in 1, we assume that the automated vehicle is supposed to cross an un-
signaled intersection without any traffic light. We assume that there is one stop line
behind intersection and the ego vehicle can stop and wait behind that line until the
situation become safe for crossing. The goal is to cross the intersection without blocking
oncoming vehicles on the other lanes. For that purpose, the RL agent decides about the
action given to trajectory planning and control module during crossing the intersection
(figure 2). The action can be stop, drive fast or drive slow (crawl) and is selected using
DQN network (2.2). The input for the DQN is other vehicles velocities and distances to
the collision point and also the ego vehicle velocity and distance to collision points and
the stop line. The main challenge is to provide a generalized approach that can handle a
variety of intersections with different number of lanes and structures.

2.1 Decision Making and Planning Pipeline

Figure 2 depicts the structure of decision making and planning pipeline that we present in
this paper. Decision making module gets the information about upcoming intersections
from the Lanelet map [10]. This information includes distance to the stop line and crossing
lanes at the intersection. A Lanelet matching module compares the position of detected
vehicles from perception with the crossing lanes and keeps those that have collision zone
with our vehicle. Distance and velocity along curve for these vehicles are then sent to the
RL module in order to choose the best optimal action as velocity constrain for the ego
vehicle. Since the path in our scenario is fixed, trajectory planning only performs speed
control in order to follow velocity constraints generated by the DQN module.

2.2 Reinforcement Learning with Deep Q Networks

Reinforcement Learning (RL) is used to solve different problems having interaction with
the environment specifically for robotics. It models the problem as Markov Decision

Lanelet Matcher

Lanelet Map

RL Yielding PolicyPerception

Localization

Vehicles

Intersectins

Priority
Vehicles

Ego Vehicle

Motion
Constraints Trajectory Planning

& Control

Figure 2: Overview of decision making and planning pipeline used in this paper for driving
through intersections in urban area.

Process (MDP). RL agent selects the best action (at) for the current state (st) which
provides the highest expected cumulative reward. The action is executed and the envi-
ronment changes to a new state (st+1). According to the reward function defined for the
RL agent, the action that was selected is evaluated and its reward value will be provided
as r(st, at) according to the new situation in the whole environment. After recording
several experiences through interactions with the environment, the agent should learn the
best actions for each state which will have highest discounted future reward:

Rt = ΣT
i=tγ

(i−t)r(si, ai) (1)

In order to find the best policy, action-value function helps to find out the cumulative
discounted reward of each action for each state:

Qπ(st, at) = Ert,st+1∼E[rt + γQπ(st+1, π(st+1))] (2)

If we assume that we have optimal Q function, a greedy policy selects actions with
maximum Q value as the best action for each state [11]:

µ(si) = arg maxa Q(si, a|θQ) (3)

The Q function can be approximated using deep neural networks known as Deep Q
Networks (DQN)[12]. Assuming θQ as the parameters of the Q function estimator, the Q
function is learned through minimizing the loss function using B random samples from
reply buffer:

L(θQ) =
B∑
i=1

(yi −Q(si, µ(si)|θQ)) (4)

where yi is the network training target:

yi = r(si, ai) + γQ(si+1, µ(si+1)|θQ) (5)

3 Learning Yielding Policy at Intersections

3.1 Parameterized State Representation

In this section, the main structure of reinforcement learning algorithm for finding best
optimal actions during driving at the intersection will be presented. As explained in
section 2.1, using lanelet map, the distance and velocity for ego vehicle and all other
vehicles at intersection will be calculated along their path as one dimensional values.

Also the ego vehicle distance to the stop line will be required for full representation of
the situation for the RL agent. All of these values are normalized assuming maximum
distance and maximum velocity of objects in our experiments. Finally, the situation for
the RL agent at time step tis represented as below:

situationt =

 de,stl d1,e d2,e ... dn,e
ve v1 v2 ... vn

de,goal de,1 de,2 ... de,n

T

The first row in the situation represents distance of ego vehicle to the stop line, velocity
of ego vehicle and its distance to the goal as de,stl, vel and de,goal respectively. In the
remaining rows, the distance of each vehicle to the collision zone with ego vehicle, its
velocity and the distance of ego vehicle to this vehicle are represented as di,e, vi and de,i
respectively where i is the id of vehicle. It should be noted that using this representation,
only N vehicles can be feed into DQN network. Therefore, when there are more than
n vehicles at intersection which have collision zone with ego lane, the ones with highest
criticality ci will be selected where ci for each vehicle is calculated as below:

ci = 1−

√
d2i,e + d2e,i
√

2
(6)

Using this equation 3.1, the vehicles which have smaller distance to the collision zones
and closer to ego vehicle will be more critical and are selected among the others with lower
criticality. When the number of vehicles is lower than N , we fill the rows of representation
with 1, 0, 1 values meaning virtual cars at maximum distance with zero velocity that can
help the DQN network to neglect them.

In order to give more information about previous distances and velocities for ego and
other vehicles for better reasoning, we provide history of situations for the RL algorithm
as our final state representation:

st =
[
situationt situationt−1 situationt−2 situationt−3 situationt−4

]
3.2 Action Representation

In the output, the reinforcement learning policy will choose about the vehicle behavior at
intersection. Every decision can be interpreted as a high level action which will be sent
for the trajectory planner as a velocity constraint:

• Stop: Full stop with maximum deceleration (amin)

• Drive-fast: Reach vfast

• Drive-slow: Reach vslow

3.3 Reward Function

The reward function that is used for the proposed DQN algorithm will qualify the status
of ego vehicle and other vehicles at the intersection in terms of safety and utility. For

that, two factors Rsafety(vi) and Rutility are defined, where Rsafety(vi) qualifies safety of
ego vehicle with respect to vehicle vi and Rutility calculates the reward according to ego
vehicle velocity. The final reward given to the RL algorithm is calculated as weighted
average of these two factors:

Rtotal = λs[min
0<i≤n

Rsafety(vi)] + λuRutility (7)

We will explain each of these two reward factors in the remaining parts of this section.

3.3.1 Utility Reward

The utility reward will only qualify the velocity of the ego vehicle:

Rutility =
vego
vdes

(8)

3.3.2 Safety Reward

Utility factor of the reward function will motivate the RL agent to drive as fast as possible
(i.e. vego = vdes) at the intersection. However, in order to yield for other vehicles which
are close to the intersection, safety reward will penalize critical situations and force the
RL agent to reduce the speed. If the ego vehicle is leaving the intersection, safety reward
will penalize situations where the ego vehicle is not able to leave before other vehicles
enter the intersection. Therefore, two safety conditions are defined to penalize each of
these situations. It should be noted that only one of these two conditions need to be valid
for the ego vehicle in order to be safe:

• Safe Stop (SS): If the ego vehicle has the possibility to stop before entering collision
zone.

• Safe Leave (SL): If the ego vehicle has the possibility to leave the collision zone
before other vehicles can enter there.

A safety gap for each condition is calculated which should be bigger than a minimum
value to be completely safe and the safety reward for that condition become 0 (maximum
safety reward). If the safety gap is smaller than critical value, it means the ego vehicle is
completely unsafe and the safety reward would be -1 (minimum safety reward). For other
cases where the ego vehicle is not completely safe or unsafe, the reward will be calculated
as below:

RSS(vi) =


−1 if dSG < dcritical (unsafe situation)

0 if dSG > dmin (fully safe situation)

−(
dSG−de,stl

de,stl−dcritical
)2 else

(9)

RSL(vi) =


−1 if tSG < tcritical (unsafe situation)

0 if tSG > tmin (fully safe situation)

−(tSG−tmin

tmin−tcritical
)2 else

(10)

Figure 3: Top view images from the simulation during one episode. Ego vehicle (red
vehicle) stops behind stop line in order to yield to other vehicles (image left), starts
driving through the intersection (middle image) and reaches the goal point (right image).

Where dSG and tSG are the safety gaps for SS and SL conditions respectively. Also dmin
and tmin are minimum required safety gap to be completely safe for each condition.

For each vehicle (vi), one of the safety conditions should be valid to make it a complete
safe situation, i.e., ego vehicle should either be able to stop behind collision zone with vi
or leave that collision zone before vi can enter there. Therefore, maximum of RSS(vi) and
RSL(vi) is selected as final safety reward according to that vehicle:

Rsafety(vi) = max(RSS(vi), RSL(vi)) (11)

Finally, we take minimum safety reward for all vehicles as the total safety reward:

Rsafety = min
0<i≤n

Rsafety(vi) (12)

In this way we make sure that for each vehicle at least one of the safety conditions is
valid and otherwise the ego vehicle is not safe.

4 Training and Evaluation

4.1 Simulation Environment

In order to learn the proposed DQN approach and also evaluate it, we use Carla simulator
[13] to simulate automated driving through an un-signaled intersection with random vehi-
cles driving at the other sides of intersection (figure 3). At the beginning of each training
episode, ego vehicle and random number of other vehicles are positions at random dis-
tances from the intersection. Each vehicle has random desired speed and is randomly
assigned to drive on one of intersection lanes. The position of stop line and also geometry
of all intersection lanes are mapped to be used for situation representation as explained
in section 2.1.

4.2 Training Setup

Figure 4 shows overall structure of DQN network. In the input, current state (st) is
processed using hego and hvi hidden layers for motion features of ego vehicle and other
vehicles accordingly. Similar to [4], we used shared weights for processing all sub layers
of other vehicles (wveh) in order to be independent from the order of vehicle features in

DQN

hego
sego

Q(s, a=Stop)

Q(s, a=Fast)

Q(s, a=Slow)

wveh

wego

hv1
sv1

hv2
sv2

hv3
sv3

hv4
sv4

hv5
sv5

Figure 4: Structure of proposed feature extraction and DQN network. All hidden layers
for processing intersecting vehicles (hvi) share same weights (wveh) and ego vehicle data is
processed by a separate hidden layer (hego). All extracted features are then concatenated
as the input of DQN network.

the state. After first hidden layer, all extracted features for ego vehicle and other vehicles
are concatenated and fed into the DQN network in order to estimate expected cumulative
reward for each action at the current state (Q(st, ai)).

4.3 Evaluation

After training more than 1000 episodes with 600,000 experiences, the learned policy
reached collision free results for 10 test scenarios. As an example, figure 6 shows which
actions have highest Q values using the trained policy at different distances and velocities
of ego vehicle (de,goal and ve) at an intersection without any other vehicle. According to
this figure, the policy drives slow when the ego vehicle is far from the intersection (to be
careful if any vehicle enters the intersection area) and when it gets closer starts to drive
fast. For better evaluating the trained policy, we compared it with a rule-based policy for
10 evaluation scenarios. The rule-based policy selects the highest velocity at each decision
time which is safe according to the safety conditions explained in section 3.3.2. As it is
visible in figure 5, performance of learned agent is close to the rule-based agent and in
some cases it outperforms the rule based decisions.

5 Conclusions

In this paper, a DQN network was proposed as a decision making module in order to
learn optimal high level actions for automated driving through un-signaled intersections.
Defining safety and utility terms in the reward function, we tried to learn actions which
are safe and also not too much conservative as the output of DQN network. Results show
that the agent can learn optimal behaviors in order to drive as fast as possible. However,

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Episode Number

A
v
g.

V
el

o
ci

ty
(m

/s
)

Rule-based Agent
RL Agent

Figure 5: Comparing trained policy and rule based policy for 10 test scenarios.

0 20 40 60 80 100
0

5

v e
(m

/s
)

STOP SLOW FAST

de,goal (m)

Figure 6: Evaluating the best action (argmaxaQ(s, a)) for different distances to the goal
and velocities (de,goal and ve) of ego vehicle assuming no other vehicle at the intersection.

there are still some challenges that should be addressed in the future works specifically
about safety verification of the DQN decisions in order to provide a completely safe and
also not overcautious policy.

6 Acknowledgment

This research is accomplished within the project “UNICARagil” (FKZ 6EMO0287). We
acknowledge the financial support for the project by the Federal Ministry of Education
and Research of Germany (BMBF).

References

[1] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, et al., “Mak-
ing Bertha Drive–An Autonomous Journey on a Historic Route,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

[2] R. van der horst and J. Hogema, “Time-to-collision and collision avoidance systems,”
Jan. 1994.

[3] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura, “Navigating
occluded intersections with autonomous vehicles using deep reinforcement learning,”
in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.

[4] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning negotiating
behavior between cars in intersections using deep q-learning,” 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC), 2018.

[5] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker, “High-level deci-
sion making for safe and reasonable autonomous lane changing using reinforcement
learning,” in 2018 21st International Conference on Intelligent Transportation Sys-
tems (ITSC), 2018.

[6] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, Multi-Agent, Reinforce-
ment Learning for Autonomous Driving,” arXiv e-prints, arXiv:1610.03295, 2016.

[7] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist net-
works: The sequential learning problem,” in, ser. Psychology of Learning and Mo-
tivation, G. H. Bower, Ed., vol. 24, Academic Press, 1989, pp. 109 –165.

[8] D. Isele and A. Cosgun, “Selective experience replay for lifelong learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
arXiv preprint arXiv:1207.0580, 2012.

[10] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt, et al.,
“Lanelet2: A high-definition map framework for the future of automated driving,”
in Proc. IEEE Intell. Trans. Syst. Conf., Hawaii, USA, 2018.

[11] C. J.C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3,
pp. 279–292, 1992.

[12] V. Mnih and D. Silver, “Playing Atari with Deep Reinforcement Learning,” 2013.
arXiv: 1312.5602.

[13] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16, 2017.

