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Abstract: Neural networks are the backbone of environment perception systems for au-
tonomous driving. While they achieve state-of-the-art performance in most computer vision
tasks, they typically do not provide self-evaluation with respect to their predictions. For au-
tonomous vehicles, though, it is vital that the system actively reasons about its limitations. The
aim of this work is to identify uncertainty in neural network decisions for semantic segmentation.
To systematically evaluate this, we develop a methodology to compare neural networks’ perfor-
mance in out-of-distribution detection and uncertainty estimation. As the core contribution of
our work, we propose a novel approach to learn uncertainty estimation for out-of-distribution
detection from unlabeled parts of the training data. Our approach only extends the training
strategy and therefore does not require any changes to network architecture or runtime. We
show that resulting networks perform en par with state-of-the-art methods that require much
greater computational efforts. Consequently, any given architecture for segmentation can be
trained to also provide out-of-distribution detection.
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1 Introduction

Neural networks have achieved state-of-the-art in most computer vision tasks and are the
foundation of modern environment perception systems. While they have been deployed
with great success, neural networks typically do not provide self-evaluation with respect
to their predictions. If neural networks are used in environment perception systems of
autonomous vehicles, though, it is mandatory that the system actively self-identifies its
limitations as the human passenger does not provide a fallback option [13].

This work focuses on neural networks for road scene understanding from camera im-
ages. Thus, the aforementioned limitations include scene configurations the network was
not trained to comprehend. In such situations the desired behavior of the classification
system would be to express low confidence or high uncertainty for the detection. As neu-
ral networks can only be trained on a finite dataset, not every possible situation or even
class configuration could be contained in a finite-sized and finite-class dataset. Thus, in
deployment, a neural network will encounter situations that significantly differ from the
data distribution it was trained with. For autonomous vehicles, it is crucially important
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to detect these out-of-distribution (OOD) samples since failures may have catastrophic
consequences.

As an example, we provide semantic segmentation results of three different models, all
trained on the Cityscapes dataset [1], in Figure 1. A standard network segments the image
into relevant classes such as road, infrastructure, vegetation or pedestrian (Fig. 1 (a)).
Now, suppose the same network was trained on data that did not include any pedestrian
labels. Alarmingly, this network fills in the unknown pedestrians with highly confident
predictions for the respective background, shown in Fig. 1 (b). An autonomous vehicle
relying on this perception consequently would cause severe accidents. If we apply our
proposed training method, the network achieves decent prediction in known regions while
tagging the pedestrians as highly inconfident (cf. Fig. 1 (c)).

rider.

(c¢) Uncertainty and prediction using our approach.

Figure 1: Example showcasing the behavior of the semantic segmentation network in
the presence of unknown classes. Blue indicates low uncertainty while red indicates high
uncertainty.



In this work, we present a method to extend any given segmentation architecture with
uncertainty estimation. To put this into perspective, we initially review approaches from
literature. We then present our simple yet effective training strategy. In order to evalu-
ate and compare respective results, a methodology for out-of-distribution detection and
network self-assessment is presented and used to benchmark the uncertainty estimation
methods.

2 Uncertainty Estimation in Neural Networks

Any neural network that is used in the perception stage of an autonomous system should
provide some means of self-evaluation. Unfortunately, the categorical decisions of neural
networks do not provide this directly. Yet, the typical activation function for classification
is the softmax s;(a) = exp(a;)/ Zjo:l exp(a;), where a; is the network’s output logit for
the ¢-th of C classes. The softmaxes can be interpreted as a categorical probability
distribution. In the following, we will briefly explain how these outputs have been used
to estimate uncertainty of network decisions in literature.

2.1 Reference Methods

Naive Baseline The maximum softmax probability can be used as a confidence mea-
sure for out-of-distribution samples as well as misclassifications [6, 11]. This provides the
baseline for the experiments of this work (¢f Fig. 1 (b)). In order to incorporate the pre-
diction of all classes, the per-pixel entropy can be used instead. The entropy for this case
with an input sample @ is defined as H(x) = — ZZC:1 pi(x)log p;(x). While the confidence
score is easily acquired, it exhibits significant limitations. Since the softmax function nor-
malizes the output distribution to 325, p;() = 1, the confidences by definition cannot
be calibrated in open set conditions with unknown classes that are not accounted for
during training. Consequently, the softmax probabilities only express relative confidences
for the known classes (e.g. the image more likely shows a dog than a cat) but no overall
confidence in the classification (e.g. the image shows neither a dog nor a cat).

Temperature Scaling Temperature scaling is an extension to the softmax function
that is commonly used as the final layer in classification networks. For this, the inputs a
to the softmax are divided by a scalar constant temperature T € RT,

si(a, T) _ €xXp (al/T) ) (1)

c
Zj:l exp (a;/T)
Since it only modifies the logits linearly, it can be applied to existing models without the
need for architecture changes or retraining [11].

Monte-Carlo Dropout In Monte-Carlo dropout, multiple forward passes are per-
formed for a test image. In each of the forward passes, random units are dropped
by using dropout [8] layers in the network architecture, introducing variations in
the predictions. Thus, they can be considered stochastic samples approximating a
Bayesian Neural Network [4, 9]. The resulting N predictions are combined by class-
wise averaging the predicted probabilities Pfinq = % Zf\il P;. The combined per-pixel



probability distribution Pj;pe is consequently used for uncertainty estimation. To enable
the use of Monte-Carlo dropout for uncertainty estimation with the model used in this
work, dropout layers are added to the central stages of the architecture, roughly following
the setup of Bayesian Segnet but applied to an FCN [9]. We compute N = 10 samples
per image during testing. The major drawback of using Monte-Carlo dropout is the sig-
nificantly increased computational cost since multiple forward passes are performed for
each input image.

Network Ensembles Deep ensembles have been introduced for uncertainty estimation
in image classification by Lakshminarayanan et al. [10]. In our implementation we employ
an ensemble of N = 9 network models for semantic segmentation. All ensemble members
share the same architecture and training data and only differ in the random seed used
for training, following the configuration for image classification in [10]. The random seed
influences the initialization of the network weights as well as the shuffling of the training
images. The predictions of the ensemble members are combined to P by class-wise
averaging, equal to the combination of samples obtained by Monte-Carlo dropout. Con-
sequently, the major drawback of this method is the significantly increased computational
cost due to multiple forward passes being performed per image.

2.2 Margin-Entropy Loss

While sampling based uncertainty estimation methods like ensembles and Monte-Carlo
dropout have shown decent results in recent publications, the need to process multiple
network forward passes per image usually prohibits the deployment in autonomous ve-
hicles due to the significantly increased runtime. In practice, an uncertainty estimation
method is required that can be used to extend an existing network architecture without
increasing the computational cost.

We employ the margin-entropy loss function that enforces a margin in predictive en-
tropy between predictions on known classes and those on the unknown data. The margin-
entropy loss function is defined as L, =max (m—l—ﬁid—ﬁvoid,()), where Hiq and H,q are
the average entropy of in-distribution and OOD samples, respectively. The hyperparam-
eter m controls the margin between the two. In contrast to entropy maximization, the
margin-entropy loss term L, prevents overfitting on the OOD areas and limits negative
effects on the performance on the original classification task. The margin-entropy loss is
designed to punish high confidence values on out-of-distribution samples for image classifi-
cation. The existing implementations of margin-entropy type loss functions require either
a computationally expensive ensemble [15], or a separate dataset providing OOD samples
for training [7]. In this work, we require neither of the two. Instead, we use Cityscapes
labels as known classes while pixels that are unlabeled or ignored in Cityscapes images,
X yoid, can be treated as OOD (shown in red in Fig. 2). The complete loss function used
to train the network is the sum L = L.+3-Lye, where L., is defined as the standard cross-
entropy loss limited to the ID samples Xy and 3 is a hyperparameter used to control the
influence of the margin-entropy loss.

Note that the additional margin-entropy loss does not induce any changes to network
architecture or required data. It can readily be applied to any given training pipeline and,
thus, does not impact the network runtime in deployment.



Figure 2: Example for unused image areas in the Cityscapes dataset. Unused areas are
highlighted in red.!

3 Experiments

In order to show the potential of our approach, we evaluate it experimentally in compari-
son to the presented baseline methods. For the first experiment, we construct a meaningful
benchmark for Out-of-Distribution Detection. Secondly, we compare the networks’ per-
formance in Self-Assessment. All experiments in this work use the same FCN-based [12]
architecture for semantic segmentation with a GoogLeNet [14] feature extractor trained
with equal hyperparameter settings.

3.1 Out-of-Distribution Detection

Evaluation of out-of-distribution detection poses a severe challenge since well-defined un-
knowns are needed. In many works, it is customary to use out-of-distribution test data
from a source other than the one the network was trained with. In segmentation, how-
ever, images are required that resemble the training data and comprise both, known and
unknown classes. Unfortunately, Cityscapes void labels are not guaranteed to not contain
known classes. This raises the need of known unknowns for evaluation. As a solution, we
leave out well-defined classes in the dataset during training which will then be used as
known unknown OOD samples during testing.

For evaluation, we employ the Receiver Operating Characteristic (ROC), which is com-
monly used to evaluate out-of-distribution detectors in recent literature [11]. The ROC
describes the relative tradeoff between true positive rate TPR = TP /(TP + FN) and false
positive rate FPR = FP/(FP 4+ TN) of binary classifiers [2]. In the out-of-distribution ex-
periment, in-distribution samples are labeled as positive, while out-of-distribution samples
are labeled as negative. We use two metrics that summarize the ROC performance of a
classifier:

e AUROC: The ROC curve of a continuous score classifier can be summarized in a
single scalar by calculating the Area under the Receiver Operating Characteristic
(AUROC). A perfect detector corresponds to an AUROC score of 1.0 [3].

e FPR@O0.95TPR: The false positive rate at 0.95 true positive rate describes the
probability that a negative sample is classified as positive when the TPR equals
0.95 [11].

INote that this is an extreme example for unused regions.
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(d) Margin-Entropy

Figure 3: Uncertainty visualizations for OOD detection using the classes pedestrian and
rider as out-of-distribution samples for evaluation. Blue indicates low uncertainty while
red indicates high uncertainty.

The OOD detection performance is visualized for an example scene in Figure 3. In this
experiment, the network is trained on the Cityscapes [1] training set, treating pedestrian
and rider as known unkowns for evaluation. These classes are therefore not used in any
of the loss calculations. Figure 3 shows the image with the model prediction as overlay
(left), the predictive entropy as a heatmap (middle) and the same with temperature
scaling applied (right).

The confidences of the baseline network on the unknown class pedestrian are nearly
indistinguishable from the known classes, comparable to Figure 1. The OOD detection is
slightly enhanced using ensembles and Monte-Carlo dropout. Using the proposed margin-
entropy loss, the pedestrians show significantly lower confidence than the known classes,
increasing OOD detection performance. The margin-entropy loss additionally causes low
confidence levels on image areas such as the hood of the ego vehicle and the rectifica-
tion border since these areas are ignored in Cityscapes. This is a desirable result since
they cannot be classified correctly with the available set of classes. Temperature scaling



notably decreases confidence on pixels showing the OOD class pedestrian in all of the
presented methods including the baseline model. Combined with the introduced methods
for uncertainty estimation, the pedestrians show low confidence, clearly separating them
from the known classes in the image. Using the margin-entropy loss, this effect is most
pronounced.

Table 1 shows the quantitative results of this OOD detection experiment evaluated
on the Cityscapes [1] validation set, again with persons treated as known unknowns for
evaluation. The columns beneath each OOD detection metric show the results for using
either the maximum predicted confidence or the negative predictive entropy as confidence
scores. Without temperature scaling, the margin-entropy loss achieves the best OOD
detection results in terms of FPR@(0.95TPR. Combined with temperature scaling, the
detection rates are significantly improved for all methods. While the sampling based
methods combined with temperature scaling achieve higher detection rates than margin-
entropy in this setting, the results of margin-entropy are comparable with only requiring
a single forward pass. Using the predictive entropy as uncertainty score yields noticeably
better results in this experiment when compared to the predicted confidence.

Configuration gl;ljf‘@o'%TPgnltI;% ) égioc HEJZEL(T) mlIoU in % (1)
Baseline 57.5 49.7 89.7 90.8 74.0
Ensemble 53.3 39.7 91.3 92.6 76.4
MC Dropout 51.1 37.1 89.9 93.5 72.9
Margin-Entropy 46.6 34.0 92.0 93.2 1.7
Baseline + T 37.1 30.7 93.1 94.2 74.0
Ensemble + T 32.4 24.8 94.2 95.3 76.4
MC Dropout + T 26.7 18.7 95.3 96.4 72.9
Margin-Entropy + T | 28.3 26.0 94.5 94.9 71.7

Table 1: Results of OOD detection experiment on the Cityscapes [1] validation set using
pedestrian and rider as out-of-distribution classes. The subsequent +T denotes the use
of temperature scaling. 1 indicates larger value is better and | indicates lower value is
better.

The effects of temperature scaling are further analyzed in Figure 4. To measure
the influence of temperature scaling on the calibration of the network confidences we
additionally use the Expected Calibration Error (ECE) [5]. The ECE for n samples is
defined as

M
| Bm|
ECE = mZ:l = face(By) — conf(By,)| (2)
The ECE expresses the weighted average difference between predicted confidence and
achieved accuracy, discretized over M confidence intervals with their respective set of
predictions B,,. Figure 4 (a) highlights the effects of temperature scaling on the calibra-
tion of the network predictions. When tuned for optimum OOD detection performance,
the calibration of the network deteriorates significantly. At the optimum OOD detec-
tion temperature of T' = 2.6, the network is strongly under-confident as visualized in the
reliability curve in Figure 4 (b). Thus, the usage of temperature scaling depends on the
calibration requirements of the specific usecase.
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(b) Reliability curve on in-
distribution classes at tem-
perature T' = 2.6.

Figure 4: Temperature scaling effects on OOD detection and calibration using pedestrian
and rider as out-of-distribution classes. Charts show the baseline model.

3.2 Network Self-Assessment

Out-of-distribution input data is not the only source of failure for classification systems.
Similar to humans, classification systems based on neural networks sometimes fail to
predict the correct class even for input samples that are close to the distribution of the
training data. We evaluate the quality of the confidence score with regard to network
self-assessment in two ways. First, the confidence score is used in a binary classification
setting. In contrast to the OOD experiment, positive samples are now defined as correctly
classified samples, while negative samples are defined as incorrectly classified. Second, we
evaluate the calibration of the confidence scores. A network is perfectly calibrated if the
accuracy of the predictions is equal to their respective confidences [5]. This property
is crucial if the classification system is used for sensor fusion in conjunction with other
perception systems. The confidence needs to be a meaningful, interpretable measure to
be able to understand and compare predictions.

The results of the self-assessment experiments are summarized in Table 2. In addition
to the binary classification metrics and the expected calibration error, we report the
average predicted confidence for misclassifications p,,,. Contrary to the out-of-distribution
detection experiments, temperature scaling showed no positive influence on network self-
assessment and is not included in Table 2. The unchanged predicted softmax confidence of
the baseline model is a competitive baseline for network self-assessment with an AUROC
of 93.8 %. This score expresses a performance which significantly exceeds that of a
random classifier. In general, capturing statistics about predicted confidences of correct
and incorrect classifications is surprisingly effective for detecting whether an example
is classified correctly, even though the prediction probability itself can be deceiving with
Perr = 0.747. This supports the results for image classification by Hendrycks & Gimpel [6].

The network ensemble outperforms the other approaches in terms of AUROC and
FPR@O0.95TPR. There is a correlation visible between these metrics and the ECE which
can intuitively be explained by the similar objectives measured by both metrics. In con-
trast to the OOD detection experiments, there is no clear benefit observable for choosing
either the predicted confidence or the predictive entropy as uncertainty quantification.



The margin-entropy loss introduces no deterioration in this task compared the baseline,
indicating that the uncertainty related to out-of-distribution samples is fundamentally
different when compared to misclassifications.

FPR@0.95TPR (}) | AUROC (1) | P, ECE (}) mlIoU (1)
in % in % in % in %
Configuration Conf. Entr. Conf. Entr.
Baseline 32.8 32.9 93.8 94.1 | 0.747 1.47 74.3
Ensemble 28.7 29.2 95.2  95.1 | 0.692 0.44 7.4
MC Dropout 32.8 33.5 94.7  94.7 | 0.697 0.78 72.4
Margin-Entropy | 33.9 34.7 94.2  94.3 | 0.716 1.19 72.3

Table 2: Results of network self-assessment experiments on the Cityscapes [1] validation
set. 1T indicates larger value is better and | indicates lower value is better.

The performance of the network ensemble is visualized in comparison to the baseline
model in Figure 5. A large area of the front of the truck is misclassified as traffic sign
and passenger car. The ensemble (b) exhibits significantly lower confidence for the mis-
classified areas compared to the baseline model (a) while at the same time reducing the
misclassified area.

Prediction Overlay  Classification Errors (White) H(x)

(b) Ensemble

Figure 5: Example scene for misclassification detection

4 Conclusion

In this work, the uncertainty estimation of neural networks for semantic segmentation
was analyzed. We provide an evaluation methodology for out-of-distribution detection
and network self-assessment and compared multiple approaches experimentally. The re-
sults of the baseline out-of-distribution detection experiments in this work highlight the
need for uncertainty estimation in black-box perception systems like neural networks. Re-
cent research on uncertainty estimation in neural networks has shown the effectiveness of



sampling based methods like network ensembles [10] and Monte-Carlo dropout [9]. This,
however, increases computational demands, potentially beyond real-time requirements.
We, instead, propose a simple yet effective training strategy that can enable any given
architecture to detect out-of-distribution data at similar detection accuracy. This en-
ables existing systems to be extended by uncertainty estimation of which the downstream
processing can benefit greatly.
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