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Abstract: One key challenge for a scenario-based verification and validation approach of auto-
mated vehicles is the completeness of a scenario set for a specific operational design domain of the
system. A possible solution is the use of real-world datasets to argue for the representativity of a
given set of scenarios. In order to make these arguments, it is necessary to estimate the amount
of data that has to be collected. This contribution investigates the occurrence of saturation
effects in the data collection for the test of automated vehicles to estimate the representativity
of a set of scenarios. To this end, we analyze a dataset collected in the city of Hamburg with
respect to saturation effects in the observed maneuvers.
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1 Introduction
In order to introduce highly automated driving (HAD) to the market, the safety verifica-
tion and validation of these systems is a key requirement. Since distance-based validation
approaches will likely not be feasible for economic reasons alone [1], scenario-based ver-
ification and validation of HAD-Systems are a focus of current research activities [2].
However, it is currently an unsolved question how a finite set of scenarios for the test of
an automated vehicle should be constructed. Especially it is a challenge to argue for the
completeness and representativity of a scenario set for a given operational design domain.

A possible approach to this argumentation for completeness and representativity is
the exposure of the scenario set during real-world traffic recordings. The recognition of
semantic traffic behavior based on vehicle and pedestrian maneuvers can facilitate the
estimation of scenario exposure [3]. Due to the description through maneuvers, the traffic
behavior of objects is abstracted from, becomes differentiable and thereby countable and
collectable. However, it is necessary to know the amount of traffic data that has to
be collected through real-world driving to make a representative statement about the
exposure of different traffic scenarios. Therefore, this publication analyzes saturation
effects during the data collection of vehicle maneuvers in urban traffic to estimate the
data quantities that are needed for this task.
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2 Related Work
This work is following a suggestion by Wachenfeld et al. [4], that test drives with auto-
mated vehicles are not only useful to test the system functionality directly. Rather, the
data collected on these drives can also be applied to model traffic behavior and assemble
a set of scenarios to test the automated vehicle in simulation or proving ground tests.

The assembly of a set of scenarios is also addressed by Hauer et al. [5]. They propose
to model the search for new scenario types as a coupon collector’s problem to estimate
the likelihood of detecting previously unseen scenario types in new collected measurement
data. These abstract scenario types correspond to the Functional Scenarios introduced
by Menzel et al. [6]. In this paper, we investigate new maneuver combinations as a
part of these Functional Scenarios to facilitate this and other approaches to evaluate the
completeness of scenario catalogues.

Amersbach and Winner [7] propose a method to calculate the number of concrete
scenarios required for the validation of automated vehicles. Based on the work of Langner
et al. [8], they assume the share of unique scenarios to be one fifth of the overall amount
of observed scenarios. Accordingly, they estimate the amount of scenarios required for
the validation to be nreq ≈ 1.2 · 1010. In our work, we investigate the occurence of new
unique scenarios in measurement data by looking at the occurrence of abstract vehicle
maneuvers. The findings could be incorporated into calculations such as the ones proposed
by Amersbach and Winner [7].

Mauritz et al. [9] introduce a testing strategy for a lane change assistant based on an
abstract semantic domain description. They demonstrate how it is possible to estimate
the achieved test coverage over time using this semantic description. A transfer of this
methodology to pedestrian traffic and the test of automated driving systems is described
by Hartjen et al. [3], but did not include the semantic analysis of vehicle movements.
While the approach proved helpful in identifying semantically redundant elements in
recorded test drives, saturation behavior could not be observed due to the limited size of
the analyzed data.

A framework to model driving maneuvers for the generation of test scenarios is pre-
sented by Krajewski et al. [10]. Their approach uses Generative Adversarial Networks
(GANs) to synthesize new trajectories from a set of previously recorded maneuver in-
stances. While this is an important addition to our work in this paper, the question of
how much data should be collected is not addressed to the best of our knowledge.

An estimation of the necessary amount of Naturalistic Driving Data (NDD) for traffic
modeling is presented by Wang et al. [11]. In their work, they apply the Kullback-Leibler
(KL) Divergence [12] to measure the change in estimated probability density functions
when using more data to compute them. While the focus of their work is the analysis of
longitudinal driving behavior, the general methodology seems to be transferable to other
applications as well. In this work, their presented methodology is transferred to analyze
saturation effects in the collection of semantic traffic data for the test of automated
vehicles. The usage of the KL-divergence measure is discussed in detail in the later part
of this publication.

Despite an emerging consensus in the scientific community that scenario-based ver-
ification and validation approaches for automated driving will play an important role,
it remains an unsolved challenge how to assemble a representative set of scenarios. In
order to utilize real-world data collected during test drives, it is of interest to estimate the



amount of data that has to be collected to make informed statements about the surround-
ing traffic of the automated vehicle. To the best of our knowledge, this area of research
has not been widely investigated for the purpose of verifying automated vehicles. In this
work, we therefore address two research questions that will be discussed in the following
section.

3 Research Questions and Hypotheses
Based on the analyzed related work, the following research questions were identified to
quantify the amount of measurement data that should be collected to create a represen-
tative set of scenarios for scenario-based testing of urban automated driving functions.

Research Question 1 How much data is needed to achieve saturation with respect to
the behavior of objects?

In this contribution, the behavior of movable objects is defined as sequences of maneu-
vers [13]. To answer this research question, we will look at the parametric description
of individual maneuvers on one side and at their occurrence in the form of maneuver
sequences on the other side. A dataset is considered to be saturated in this respect when
no previously unseen maneuver sequences are detected through additional data collection
efforts. The amount of data necessary to observe these saturation effects is analyzed in
this work.

Research Question 2 Is it possible to identify commonly occurring Functional Scenar-
ios by means of semantic classification?

Since identifying all possible Functional Scenarios (cf. [6]) in recorded measurement data
is likely going to be very time and cost expensive, it could be of great practical interest
to determine common scenarios. These scenarios would be likely to occur during the
field operation of an automated vehicle. Thereby, a first goal of the verification and
validation process of the system could then be to establish the safe behavior of the system
in these common Functional Scenarios, for example in regression tests of new software
revisions. In this research question, it will be investigated if and how the classification
of abstract maneuvers in recorded measurement data can aid the process of identifying
common Functional Scenarios.

4 Methodology
To investigate the aforementioned research questions, data was collected on test drives
with automated vehicles in the city of Hamburg. The driven route is shown in Figure 1.
Our dataset consists of approximately 3 hours of urban driving, in which the vehicles
travelled roughly 50.6 km. In this database, we classified 179 488 maneuvers that were
executed by surrounding objects.

In an earlier publication [13], we introduced a catalog of vehicle maneuvers, as well
as the different layers of semantic analysis for urban traffic that will be the foundation of
of this work. The layers are shown in Figure 2. For the purpose of this work, classifiers



Figure 1: Routes driven for the col-
lection of maneuver data in the city
of Hamburg, Germany. Map data by
OpenStreetMap [14]

Scenario-Layer
Number of traffic
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Behavior-Layer
Sequences of maneuvers

Maneuver-Layer
Parametric Description
of individual
maneuvers

Maneuver 1 Maneuver 2

Figure 2: Layers of semantic analysis for
traffic participants in urban traffic sce-
narios, extended from [13]

were implemented to detect all maneuvers of the catalog [13] in measurement data with
the exception of Follow Lane and Park maneuvers. The following subsections describe
the applied methodologies, as well as the preliminary results.

4.1 Saturation Analysis

With respect to Research Question 1, the collected data is analyzed on the Maneuver
Layer and the Behavior Layer with respect to the occurrence of saturation effects.

4.1.1 Maneuver Layer

On the lowest layer of analysis, the execution of individual maneuvers is examined. An
example is the velocity profile or the trajectory curvature during Turn Left maneuvers at
intersections. For the purpose of this work, the analysis on the Maneuver Layer will be
limited to investigate one exemplary maneuver parameter, the initial velocity v0 observed
in Turn Left maneuvers. Apart from being an illustrative example, this parameter could
also be of practical interest to specify the initial state of a vehicle in a simulation scenario,
even if the remaining movement of the object is determined by a traffic model.

In order to describe the observed execution of the maneuvers in the database in a
uniform manner, the object movements are modeled by Beziér curves of third order [13].
Three curves describe the spatial movement as well as the observed velocity profile. Fig-
ure 3 depicts the first parameter of the Beziér curve modeling the velocity v0 during
classified Turn Left maneuvers in the analyzed database. After the trajectory of each
recorded maneuver of the chosen type has been converted to this local coordinate system,
the Bézier points are calculated. By combining the Bézier representations of all observed
maneuver instances, the underlying probability density function (pdf) for v0 is estimated
using kernel density estimation (kde) with Scott’s rule [15] for bandwidth selection.

Following Wang et al. [11], saturation effects regarding the amount of collected ma-
neuver samples are investigated by repeating the process of kde for different sample sizes.
To this end, 125 instances of Turn Left maneuvers are sampled to 30 different sets of
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Figure 3: Recorded initial ve-
locities during 125 Turn Left
maneuvers
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Figure 4: Kullback-Leibler divergence to the pre-
vious distribution of initial velocities during Turn
Left maneuvers over the amount of maneuver
samples used for kernel density estimation

equidistant size. The obtained pdfs are then compared using the Kullback-Leibler [12]
divergence to the next smaller sample set. The results are shown in Figure 4.

4.1.2 Behavior Layer Analysis

To analyse saturation effects on the Behavior Layer, the amount of observed unique
maneuver sequences is plotted over the cumulated number of recorded objects. Since
multiple maneuvers can be executed at each point in time, we introduce the concept
of a Paralell Maneuver Combination (PMC). A PMC captures all the maneuvers that
an object is executing at a defined point in time (cf. Figure 5). A Parallel Maneuver

Maneuver Timeline

PMCS: A−ABC −BC − C

Maneuver A

Maneuver B

Maneuver C

A ABC ABC BC BC C C C

Figure 5: Abstract example for the notation of an object’s Parallel Maneuver Combination
Sequence (PMCS) from its maneuver timeline

Combination Sequence (PMCS) is subsequently defined as the chronological development
of an object’s PMC state. A PMCS is constructed by identifying the PMC at each
discrete point in time and then appending it to the sequence if it differs from the previous
PMC. An abstract example for the construction of a PMCS can be found in Figure 5. In
the beginning, the object executes only the abstract maneuver A. Next, it simultaneously
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Figure 6: Amount of observed unique
Parallel Maneuver Combination Se-
quences (PMCSs) of length 3 or smaller
over the total number of observed ob-
jects
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Figure 7: Amount of observed unique
Parallel Maneuver Combination Se-
quences (PMCSs) over the total number
of observed objects

starts to execute the maneuvers B and C, changing its current PMC from A to ABC
and adding a new entry to its PMCS. After the execution of maneuver A terminates, the
current PMC is now BC, adding another entry to the PMCS which is followed by C after
the execution of maneuver B terminates as well. Note that repeated PMC samples are not
duplicated in the PMCS since it reflects only changes in the object’s current maneuver
constellation. This constitutes an abstraction by neglecting the temporal extension of
individual PMC states in the sequence.

Once the PMCS has been constructed for every object in the recorded database,
the occurrence of new unique sequences is analyzed regarding saturation effects. For
every PMCS, it is checked whether or not an identical PMCS was already observed for
another object in the database. If not, it is added to the set of known sequences and the
respective count is incremented by one. Figure 6 shows the development of the number
of observed PMCS of length three or shorter over the time driven, while Figure 7 shows
the development for all sequences.

4.2 Common Scenarios

To answer Research Question 2, common patterns of maneuver sequences are identified
and their frequencies of occurrence are compared. This way, commonly occurring ele-
ments of scenario layer 4 [16] can be found and subsequently be turned into Functional
Scenarios [6] for simulation or proving ground tests. To this end, Figure 8 shows the 15
Parallel Maneuver Combination Sequences with the highest number of occurrences in the
database.

5 Discussion
In the first research question of this paper, the goal is formulated to estimate the amount of
recorded data after which repetitions in the observed maneuver data make the collection of
more data inefficient. When looking at the analysis of the Maneuver Layer, a qualitative
evaluation of the results in Figure 4 shows the occurrence of saturation behavior with
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Figure 8: 15 Parallel Maneuver Combination Sequences (PMCS) with the highest number
of occurrences in the database

respect to the distribution of initial velocities v0 during Turn Left maneuvers. As shown
by Wang et al. [11], the detection of saturation can be quantified by introducing a
threshold parameter ε. The dataset is then considered saturated if none of the remaining
KL-divergence values exceeds ε. Therefore a discussion should be held if and for what
value of ε this kind of saturation effect should be incorporated into the overall validation
process.

While saturation behavior was observable for the investigated example of initial ve-
locities during Turn Left maneuvers after around 80 samples, this does not necessarily
apply to other parameters or other maneuvers for that matter. The introduced method-
ology could be applied to a wider range of parameters to research similar effects for these
maneuver properties.

Analysis on the Behavior Level showed no significant saturation effects in the data
quantities that were investigated in this paper. In fact, a linear regression for the number
of unique PMCS nPMCS over the amount of observed objects nobjects yields R2 ≈ 0.99,
indicating a nearly linear relationship between the two variables. This absence of sat-
uration effects in the observed behavior could have multiple causes. On the one hand,
it is possible that the quantity of analyzed data was simply not sufficient. Since we are
not looking at entire scenarios, but rather at individual object behavior as an element of
scenario layer 4 [17], it is difficult to compare the obtained results to estimations of the
amount of required scenarios such as by Amersbach and Winner [7] to assess plausibility.
Another possibility would be that the concept of PMCS is not well suited to compare
object behavior. This cannot be ruled out but is viewed to be unlikely since it introduces
a significant abstraction from the actual concrete behavior. Therefore an overestimation
of the actual traffic complexity should not take place in our current opinion. Nevertheless,
our approach manages to quantify the variability of the underlying dataset by differenti-
ating the sequences of abstract maneuvers from each other. Thereby, we hope to further
contribute to the understanding of large traffic datasets with this approach, which could
not only be applicable for the verification and validation of automated vehicles, but also
in training data selection for machine learning algorithms.

Another important factor influencing the saturation results are the classification algo-



rithms for the individual maneuvers. Since recognizing them reliably in noisy measure-
ment data is not a trivial task, the output can generally include false positive as well
as false negative detections. The classification algorithms written in the context of this
publication are considered to be experimental software that could be subject to bugs.
Therefore, the results should be treated with care, as future improvements could also
influence the statistical findings discussed in this paper. After manual inspection, we do
however believe the general trend of our results to remain, even if the implementation of
the classification algorithms could change in the future.

Looking at the second research question concerning the identification of commonly
occurring scenarios, only a partial answer can be given. By looking at the occurrence of
different PMCS in Figure 8, common elements of scenario layer 4, the movable objects,
can be identified. For example, a common sequence that was identified this way was the
combination of a Cross Junction maneuver with a simultaneous Keep Velocity maneuver.
The most common sequence was a single Standstill maneuver. This could be an indication
to increase testing efforts with respect to this behavior, since there seems to be a high
exposure to it, at least in the dataset that was analyzed in this work.

These analyzed sequences of maneuvers only represent one element of scenario layer
4, the movable objects. They can however be used as building blocks in the construction
of test scenarios. For example, a strategy could be to construct scenarios that include
one of the most occurring PMCS to test the automated vehicle’s reaction to this common
behavior.

6 Conclusion and Future Work
In this paper, we have investigated the occurrence of saturation effects in collected mea-
surement data for the verification and validation of automated driving. While our analysis
of individual maneuver parameters indicated saturation behavior for the chosen exemplary
maneuver parameter, more research is necessary to determine the applicability of the ob-
tained quantitative statements for other parameters and a wider range of maneuvers.
The investigation should also be extended to include parameter correlations to more ac-
curately reflect the complex nature of urban traffic. On the Behavior Layer, saturation of
the observed maneuver sequences could not be determined. Future work will likely focus
on investigating larger quantities of data. It was, however, possible to determine com-
monly occurring elements of Functional Scenarios for the analyzed test drives in the form
of Parallel Maneuver Combination Sequences (PMCS). These could be a valid starting
point to further refine and construct a data-driven set of scenarios for the test of urban
automated vehicles.

Finally, the effect of route choice on the qualitative and quantitative structure of the
classified maneuver data will be analyzed in the future to further facilitate the practical
application of the proposed methodology in the verification and validation process of
automated vehicles.
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